减氮及硝化抑制剂对菜地氧化亚氮排放的影响*
2017-08-31熊正琴
陈 浩 李 博 熊正琴
(江苏省低碳农业和温室气体减排重点实验室,南京农业大学资源与环境科学学院,南京 210095)
减氮及硝化抑制剂对菜地氧化亚氮排放的影响*
陈 浩 李 博 熊正琴†
(江苏省低碳农业和温室气体减排重点实验室,南京农业大学资源与环境科学学院,南京 210095)
利用静态暗箱—气相色谱法,周年监测集约化菜地四种蔬菜种植过程中N2O的排放和蔬菜产量变化,探究减氮(640、960 kg hm-2a-1)以及施用硝化抑制剂氯甲基吡啶(CP)对菜地N2O排放的影响。结果表明,与常规施氮(Nn)处理相比,减量施氮(Nr)在不显著降低产量的情况下平均降低菜地N2O排放27.1%;与仅施用尿素的处理相比,在减量和常规施氮水平的基础上添加硝化抑制剂又分别能降低菜地N2O排放总量29.4%、26.0%,降低N2O排放系数60.9%、42.4%,而对蔬菜产量没有显著影响,因此显著降低菜地单位产量N2O排放量32.1%、30.3%,以减氮结合CP(CP-Nr)处理减排效果最佳。因此,减氮结合CP应用于集约化蔬菜生产是一种有效的菜地减排农业措施。
集约化菜地;N2O排放;氮肥减量;硝化抑制剂
氧化亚氮(N2O)是最重要的温室气体之一[1]。在所有已知的N2O排放源中,农业活动是其中最重要的释放源[2]。研究表明,农田土壤N2O排放占全球人为活动引起N2O排放的70%[3]。据统计,中国化肥用量从1978年的8.8×106t增加至2012年的5.8×107t[4],而化学氮肥投入的增加是农田N2O排放增加的重要原因[5-6]。我国是蔬菜生产大国,蔬菜种植面积由1989年的6.3×106hm2发展到2014年的2.1×107hm2,占当年农作物总播种面积的12.9%[4]。集约化菜地具有灌溉频繁、复种指数高、施肥量大[7]等特点,是重要的农田N2O排放源。
通常,一季蔬菜的施氮量可高达300~700 kg hm-2[8],远超过推荐施肥量,造成氮肥利用率低[9],N2O大量排放[10],甚至减产、土壤酸化等一系列负面影响[11]。氮肥合理优化施用,是实现集约化蔬菜生产可持续发展的重要措施。刘兆辉等[12]研究表明农业生产中,在一定范围内减少施氮量可能不影响作物产量甚至增产,但在部分区域减氮仍然会导致减产,或者并不明显影响作物产量[13]。因此,在集约化蔬菜生产过程中减量优化施氮值得关注。
近年来,硝化抑制剂作为提高氮肥利用率、减少N2O排放的“良药”被广泛关注。硝化抑制剂对作物产量表现为增产[14]或没有显著影响[15]等。水稻[16]、小麦[17]及牧草[18]等生长期内施用硝化抑制剂对土壤N2O排放有很好的抑制效果,但在集约化菜地生态系统中的研究较少。硝化抑制剂在集约化菜地中的施用效果以及与减量施氮配合运用的效果均亟待研究。
本试验以南京高桥门菜地周年复种的四种蔬菜为研究对象,周年监测减量施氮以及施用硝化抑制剂氯甲基吡啶(CP)对菜地N2O排放和蔬菜产量的影响,以期为我国集约化菜地保产减排提供理论依据。
1 材料与方法
1.1 研究区概况
试验于江苏省南京市高桥门镇(32°01′N,118°52′E)进行。该地区的气候属于典型的长江中下游亚热带季风气候,年平均气温15.4 ℃,年均降水量1 107 mm。此地区集约化种植蔬菜长达数十年。通过在寒冷季节使用塑料大棚进行增温,一年可以种植3~5茬蔬菜,是南方集约化蔬菜生产的典型代表。试验地土壤类型为旱耕熟化人为土,pH为5.2,容重为1.2 g cm-3,有机碳为19.2 g kg-1,有机氮为2.0 g kg-1。
1.2 试验设计
本试验共设置4个处理,包含减量施氮(Nr,施氮 640 kg hm-2a-1)和常规施氮(Nn,施氮 960 kg hm-2a-1),在两个氮肥水平分别设施用硝化抑制剂CP(CP-N)、不施用CP(N)。按照当地常规种植方法,试验期内共种植4茬蔬菜,每季蔬菜施氮量相等。所用氮肥为普通尿素,含硝化抑制剂氯甲基吡啶(CP)的尿素由浙江奥复托化工有限公司生产,含量为尿素态氮的0.24%,对分解铵态氮的单细胞硝化杆菌具有抑制作用。常规施氮量根据当地农民常规施肥水平确定的。每个处理3次重复,小区面积3 m×2.2 m。
试验期间共种植四种蔬菜,分别为苋菜、空心菜、香菜和小白菜,其中香菜和小白菜种植过程中有塑料大棚覆盖。具体的蔬菜生长时间与农事操作见表1。
蔬菜播种前翻耕平整土壤,其余田间操作与管理措施,如施肥方式、浇水灌溉、病虫害防治等与当地农户习惯一致。每季钾肥(氯化钾,60% K2O)和磷肥(钙镁磷肥,12% P2O5)施用量均为960 kg hm-2a-1,氮、磷、钾肥全部作基肥在每季蔬菜种植前一次性施入,施肥方式为表施。
表1 四种蔬菜生长时间及农事操作情况Table 1 Growth periods and farming practices of four vegetable crops
1.3 样品采集与分析
采用静态密闭暗箱—气相色谱法测定菜地N2O排放通量。采样箱由PVC材质制成,采样底座固定在试验小区内,底座面积为50 cm×50 cm,高度为40 cm。采样时扣上采样箱并及时向底座凹槽注水以密封土壤与采样箱的连接。采样频率通常为一周一次,施肥与灌溉后加密采样,2~3 d一次,持续7~10 d。采样时间为当天上午9:00~11:00,用20 ml注射性针筒采集气体样品,在箱子密闭后0、10、20和30 min共采集4个气体样品。采好的样品带回实验室于48 h内用安捷伦气相色谱仪(Agilent 7890A)测定样品中N2O含量。安捷伦气相色谱(Agilent 7890A)检测器为ECD,检测器温度300 ℃,载气为5%氩甲烷。每次采样时同时测定采样箱内温度、土壤温度、大气温度。根据四个样品N2O浓度和采样时间的直线回归斜率求得N2O排放通量,按下式计算:
式中,F是N2O排放通量(µg m-2h-1);ρ是标准状态下的气体密度(mg m-3h-1);h是箱高(m);dC/dt为采样箱内的气体浓度变化率;T为采样过程中采样箱内的平均温度(℃)。
土壤样品采集采用五点取样法,深度为0~15 cm,约7~15 d采集一次。分析时用2 mol L-1的KCl浸提,滤液中的铵态氮(-N)浓度采用靛酚蓝比色法测定,硝态氮(-N)浓度采用紫外分光光度法测定。土壤孔隙含水量(WFPS)根据每次测定的土壤质量含水量与土壤容重计算得到。
1.4 数据处理
采用Excel 2010软件进行数据计算及图表制作,采用JMP 9.0软件对各处理N2O累积排放量、N2O排放系数、蔬菜产量和单位产量N2O排放量进行多重比较(LSD法)及相关性分析,N2O排放系数等于施氮处理的N2O排放量减去未施氮处理的N2O排放量并除以施氮量,未施氮处理的N2O排放量在本文中未呈现。采用SPSS 16.0对菜地N2O排放主要驱动因子进行偏相关以及成对相关分析。
2 结 果
2.1 各处理菜地N2O排放通量以及相关因子动态变化
试验期内,各处理菜地N2O排放通量的季节性变化规律基本一致,而不同蔬菜季N2O排放情况各有差异(图1)。菜地N2O排放主要集中在5—9月份,而在其他季节排放相对较少(图1),与温度变化极显著正相关(表2,p<0.01)。苋菜生长季的N2O排放峰出现在施肥后10 d左右,这与该季节的温度逐渐上升有关,其峰值为N 2 594 µg m-2h-1;空心菜生长季的排放通量最大,在施肥后很快达到排放峰,其峰值为N 6 426 µg m-2h-1。因为该生长季(2015/07/15—2015/09/29)的气温最高,导致其土壤温度偏高,温度变化范围为23.4~31.2℃;同时频繁的降雨导致空心菜季土壤WFPS达到49.1%~74.0%,促进菜地土壤N2O排放(表2,p<0.05);香菜和小白菜生长期间由于过低的温度导致未产生明显的排放峰。此外,各处理的N2O排放通量范围为N 1.2~6 427 µg m-2h-1,且随着施肥量的增加而升高;相同施氮量下添加CP处理明显降低了N2O排放通量。
由图2可知,菜地土壤的铵态氮、硝态氮含量变化范围为10.8~247.2 mg kg-1和1.8~186.8 mg kg-1。各处理的铵态氮与硝态氮含量平均值变化范围为50.9~60.4 mg kg-1和31.6~43.3 mg kg-1。随着施氮量的增加,各处理的土壤无机氮含量增加;与仅施尿素的处理相比,常规施氮量添加CP处理菜地土壤铵态氮含量平均值显著增加12.3%,在常规和减氮两个水平上添加硝化抑制剂处理菜地土壤硝态氮的含量均增加。
图1 菜地不同处理N2O排放通量、土壤温度、土壤孔隙含水量动态变化Fig. 1 Dynamics of N2O flux,soil temperature(T)and soil water filled pore space(WFPS)in vegetable field under different treatments
表2 土壤孔隙含水量、土壤温度及土壤铵态氮、硝态氮与N2O排放通量的相关性(右上部分)、偏相关性(左下部分)Table 2 Pairwise correlations(top right)and partial correlations(bottom left)of the main driving factors of WFPS,soil temperature(T),-N and-N concentrations on N2O emissions during the whole observation period
表2 土壤孔隙含水量、土壤温度及土壤铵态氮、硝态氮与N2O排放通量的相关性(右上部分)、偏相关性(左下部分)Table 2 Pairwise correlations(top right)and partial correlations(bottom left)of the main driving factors of WFPS,soil temperature(T),-N and-N concentrations on N2O emissions during the whole observation period
注:*,p<0.05,**,p<0.01
N2OWFPSTNH4+-NNO3--N N2O-0.208**0.521**0.781**0.700** WFPS0.221*--0.061-0.1440.081 T 0.345**-0.065-0.423**0.230** NH4+-N0.539**0.327**0.108-0.667** NO3--N0.383**0.133-0.207*0.316**-
图2 不同处理铵态氮、硝态氮动态变化Fig. 2 Dynamics of NH4+-N and NO3--N concentrations within the 0~15 cm soils
2.2 菜地各处理N2O排放量及蔬菜产量的相关指标
菜地土壤N2O排放随施氮量增加而增加,试验期内Nn处理的菜地N2O累积排放量最大,为N 59.2±4.4 kg hm-2;CP-Nr处理的菜地N2O累积排放量最小,为N 31.2±2.2 kg hm-2。如图3所示,相比常规施氮处理(Nn),减氮处理(Nr)降低了菜地N2O排放量(p<0.01)与排放系数(不显著);此外,蔬菜产量随施氮量的增加而增加,而减氮处理的单位产量N2O排放量则低于常规施氮处理。与仅施氮肥的处理相比,等量施氮情况下,添加CP能够减少N2O累积排放量(图3,表3),同时显著地降低单位产量N2O排放量(图3,p<0.01)。总观测期内,在Nr、Nn两个施氮水平上,添加CP菜地N2O排放量分别减少29.4%、 26.0%,菜地N2O排放系数分别降低60.9%、42.4%,而产量未有显著影响,因此单位产量N2O排放量分别降低32.1%、30.3%。
3 讨 论
3.1 减氮及CP对菜地N2O排放的影响
土壤N2O排放的季节性变化主要是受土壤水分和温度的影响[19-20]。本试验各蔬菜季N2O排放量差异较大(表3),空心菜季菜地N2O累积排放量巨大,占总累积排放量的47.5%。这是由于夏季高温多雨,频繁的降水和强烈的干湿交替环境促进菜地硝化作用与反硝化作用,为土壤N2O的大量产生与排放提供了有利条件[21-22]。据相关研究[23]表明,当土壤WFPS高于70%,N2O主要产生于反硝化作用,反之则主要产生于硝化作用;邹国元等[24]的研究表明当土壤WFPS低于50%反硝化作用很弱,本试验中土壤WFPS平均为50%左右,因此推测硝化作用是菜地N2O产生的主要途径。此外,该季蔬菜种植期间土壤平均温度达到27.4 ℃,平均土壤WFPS达到55.8%,且该季蔬菜种植时间长达76 d,导致菜地N2O大量排放。苋菜季N2O排放量也较大,同样是由于该季蔬菜种植期间具有较高的土壤温度,同时进入梅雨季节(2015/05/03—2015/06/15),频繁的降雨促进
了N2O的大量排放。而香菜季未发生大量的N2O排放,因其土壤温度相对较低,同时降雨较少。小白菜季虽然中后期温度有所回升,但施肥初期过低的温度导致无N2O排放峰的形成。本试验中N2O排放系数整体较高(图3),这与之前关于菜地N2O排放系数的研究结果一致[25]。贾俊香等[26]的研究中菜地N2O排放系数高达4.6%。而在Wang等[10]的研究中,通过模型计算中国菜地生产氮肥引起的排放系数为0.55%,远低于本试验测定值。这是由于本试验施氮处理土壤中的无机氮背景值较高,导致各处理N2O排放量大,而对照处理在长期未施肥状态下无机氮含量较低,排放的N2O也较低,因此造成菜地N2O排放系数偏高。
表3 各季蔬菜生长期间N2O累积排放量Table 3 Cumulative seasonal N2O emissions of each vegetable growing period(N kg hm-2)
图3 各处理菜地的N2O累积排放量、N2O排放系数、蔬菜产量、单位产量N2O排放量Fig. 3 Cumulative N2O emission,N2O emission factor,total fresh vegetable output and yield-scaled N2O emission relative to treatment
减氮措施显著降低了试验期内菜地N2O累积排放量(图3,p<0.05)。这是由于Nr处理中氮肥施入量较Nn低,降低Nr处理土壤铵态氮含量(图2)。而铵态氮为土壤中的硝化作用提供底物[27],因此菜地N2O的排放量显著降低。此外,CP的施用显著降低了菜地N2O的累积排放量(图3,p<0.05),也因此显著降低了N2O排放系数。同时,因CP的添加量与氮素具有固定比例,在高施氮水平下CP含量也高,因此随施氮量增加,CP对N2O排放的抑制效果越显著。在两个氮肥梯度上CP对周年N2O排放均起到了明显的抑制效果,这是因为CP影响氮素在土壤中的转化过程,直接抑制硝化作用,从而减少了菜地N2O排放。李游[28]的研究结果表明硝化抑制剂双氰胺(DCD)的施用能够减少菜地N2O排放,这与本研究结果接近。而不同种类硝化抑制剂对集约化菜地种植N2O排放的结果也有不同。Zhang等[29]的研究结果表明,施用CP较DCD有更好的菜地N2O减排效果,这主要是由于集约化菜地灌溉措施频繁,DCD极易溶于水会在蔬菜土壤中大量流失,减排效果下降。
3.2 减氮及CP对各处理蔬菜产量的影响
为了满足持续增长的人口对食物的需求,过量施氮在中国农业生产是一个普遍的现象[30]。在集约化菜地生产中,过高的施肥量会造成土壤酸化以及无机氮大量累积的结果,从而导致减产等负面影响[11]。本试验中相对Nn处理,Nr处理并未显著降低蔬菜产量,这是因为长期集约化种植导致菜地土壤无机氮本底值较高,而减氮的氮肥用量足以满足蔬菜生长对氮素的需求;Peng等[31]及刘学军等[32]的研究表明,由于我国普遍过量施氮的国情,在多地采取减氮三分之一措施甚至一半施氮量并未造成减产,与我们的研究结果一致。
本试验中,施用CP具有一定的增产效果,但不显著。这是因为CP能直接抑制土壤中氮素的硝化作用,减少淋溶损失和硝化-反硝化损失,增加土壤-N的含量以及土壤氮素的有效性,从而提高作物产量[33]。由图2也可看出添加CP的处理-N含量相对较高。Zhang等[29]和Li等[34]的研究表明CP能够增加蔬菜产量。聂文静[35]对温室黄瓜种植施用DCD的研究也得出,硝化抑制剂能增加黄瓜产量20.6%~31.8%,高于本试验中增产5.7%~6.7%的结果,原因可能是不同的硝化抑制剂自身化学性质不同,对于不同农田生态系统的作物产量影响会有差异。
3.3 减氮及CP对各处理单位产量N2O排放量的影响
本试验中,在不降低蔬菜产量的情况下,Nr处理显著降低了菜地N2O排放量和单位产量N2O排放量(图3,p<0.05)。Zhang等[25]的结果表明,减少1/3的施氮量能够有效降低菜地单位产量N2O排放量,这与我们的研究结果一致。因此在菜地中实施减氮合理优化施肥是一种有效的降低菜地N2O排放的方式。而在相同施氮水平下,CP的施用均未显著影响蔬菜产量,并且减少了N2O排放量,因此能减少菜地单位产量N2O排放量,这与Li等[34]的研究结果相同。充分说明施用CP是一种既能保证产量又可以减排的有效措施。同时,也有研究表明硝化抑制剂的施用能降低叶类菜体内硝酸盐含量[36-37],提高蔬菜品质[35]以及减少土壤铵态氮、硝态氮的径流损失[38]。可见,硝化抑制剂施用于集约化蔬菜生产效果可观。CP的成本约为氮肥本身的5%,价格低廉,若在农业生产中进行推广,菜地经营者容易接受,可行性很高,其应用于集约化蔬菜生产将会有很广阔的前景。
4 结 论
在本研究观测期内,不同蔬菜季N2O排放量差异较大,且与土壤孔隙含水量及土壤温度极显著正相关。减量施氮在不显著影响产量的情况下降低了N2O排放量和N2O排放系数,并降低了单位产量N2O排放量。相同施氮量下,CP能有效抑制菜地N2O排放量,保持蔬菜产量,从而显著削减单位产量N2O排放量,对菜地集约化生产具有减排保产效应。因此,在集约化蔬菜生产过程中,氮肥减量施用并结合CP能同时实现保产减排,是一种值得推荐的措施。
[1] IPCC. Climate change 2013:the physical science basis:contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press,2013
[2] 黄丽华,沈根祥,顾海蓉,等. 肥水管理方式对蔬菜田N2O释放影响的模拟研究. 农业环境科学学报,2009,28(6):1319—1324
Huang L H,Shen G X,Gu H R,et al. Simulation of some impacts of fertilization and water management on nitrous oxide emission from vegetable field(In Chinese). Journal of Agro-Environment Science,2009,28(6):1319—1324
[3] Bouwman A F. Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere // Bouwman A F. Soil sand greenhouse effect. New York:Wiley,1990:61—127
[4] 中华人民共和国国家统计局. 中国统计年鉴2015. 北京:中国统计出版社,2015
National Bureau of Statistics of China. China statistical yearbook 2015(In Chinese). Beijing:China Statistics Press,2015
[5] 郑循华,王明星,王跃生,等. 华东稻麦轮作生态系统的N2O排放研究. 应用生态学报,1997,8(5):495—499
Zheng X H,Wang M X,Wang Y S,et al. N2O emission from rice-wheat ecosystem in southeast China(In Chinese). Chinese Journal of Applied Ecology,1997,8(5):495—499
[6] Mogge B,Kaiser E A,Munch J C. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhved Lake region:Influence of organic fertilizers and land-use. Soil Biology & Biochemistry,1999,31(9):1245—1252
[7] 杜莲凤. 长江三角洲地区蔬菜地系统氮肥利用与土壤质量变异研究. 北京:中国农业科学院,2005
Du L F. The nitrogen fertilizer use efficiency and soil quality variation of vegetable-soil system in Yangtze Delta area(In Chinese). Beijing:Chinese Academy of Agricultural Sciences,2005
[8] Li D J,Wang X M. Nitric oxide emission from a typical vegetable field in the Pearl River Delta,China. Atmospheric Environment,2007,41:9498—9505
[9] 曹兵,徐秋明,李亚星,等. 不同控释肥品种对大白菜产量、氮素吸收和品质的影响,华北农学报,2006,21(3):41—45
Cao B,Xu Q M,Li Y X,et al. Effects of different controlled release fertilizer types on yield,N uptake,and quality of Chinese cabbage(In Chinese). Acta Agriculturae Boreali-Sinica,2006,21(3):41—45
[10] Wang J Y,Xiong Z Q,Yan X Y. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China. Atmospheric Environment,2011,45(38):6923—6929
[11] Li B,Bi Z C,Xiong Z Q. Dynamic responses of nitrous oxide emission and nitrogen use efficiency to nitrogen and biochar amendment in an intensified vegetable field in southeastern China. Global Change Biology Bioenergy,2016,DOI:10.1111/gcbb.12356
[12] 刘兆辉,薄录吉,李彦,等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料,2016(4),DOI:10. 11838/sfsc. 20160401
Liu Z H,Bo L J,Li Y,et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment:A review(In Chinese). Soil and Fertilizer Sciences in China,2016(4),DOI:10. 11838/sfsc. 20160401
[13] 刘宇,章莹,杨文亭,等. 减量施氮与大豆间作对蔗田氮平衡的影响. 应用生态学报,2015,26(3):817—825
Li Y,Zhang Y,Yang W T,et al. Effects of reduced nitrogen application and soybean intercropping on nitrogen balance of sugarcane field(In Chinese). Chinese Journal of Applied Ecology,2015,26(3):817—825
[14] 戴宇,贺纪正,沈菊培. 双氰胺在农业生态系统中的应用效果及其影响因素. 应用生态学报,2014,25(1):279—286
Dai Y,He J Z,Shen J P,et al. Effects and influence factors of dicyandiamide(DCD)application in agricultural ecosystem(In Chinese). Chinese Journal of Applied Ecology,2014,25(1):279—286
[15] 吴得峰,姜继韶,高兵,等. 添加DCD对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响. 植物营养与肥料学报,2016,22(1):30—39
Wu D F,Jiang J S,Gao B,et al. Effects of DCD application on grain yield,N2O emission and residual nitrate-N of spring maize in rain-fed agriculture(In Chinese). Journal of Plant Nutrition and Fertilizer,2016,22(1):30—39
[16] 李香兰,徐华,蔡祖聪. 氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展. 土壤学报,2009,46(5):917—924
Li X L,Xu H,Cai Z C. Effect of combined use of hyfroquinone and dicyandlamide on CH4and N2O emissions from rice paddy field:A review(In Chinese). Acta Pedologica Sinica,2009,46(5):917—924
[17] Bhatia A,Sasmal S,Jain N,et al. Mitigation nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agriculture,Ecosystem & Environment,2010,136(3/4):247—253
[18] Di H J,Cameron K C,Sherlock R R,et al. Nitrous oxide emissions from grazed grassland as affected by a nitrification inhibitor,dicyandiamide,and relationship with ammonia oxidizing bacteria and archaea. Journal of Soils and Sediments,2010,10(5):943—954
[19] Wang Y S,Xue M H,Zheng X,et al. Effects of environmental factors on N2O emission from and CH4uptake by the typical grasslands in the Inner Mongolia. Chemosphere,2005,58(2):205—215
[20] 徐文彬,洪业汤. 贵州省旱田土壤N2O释放及其环境影响因素. 环境科学,2000,21(1):7—11
Xu W B,Hong Y T. N2O emission from upland soils in Guizhou and its environmental controlling factors(In Chinese). Environmental Science,2000,21(1):7—11
[21] Smith K A. Greenhouses gas fluxes between land surfaces and the atmosphere. Progress in Physical Geography,1990,14(3):349—372
[22] Cui P Y,Fan F L,Yin C,et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology & Biochemistry,2016,93:131—141
[23] 孙英杰,吴昊,王亚楠. 硝化反硝化过程中N2O释放影响因素. 生态环境学报,2011,20(2):384—388
Sun Y J,Wu H,Wang Y N. Influencing factors of N2O emission from nitrification and denitrification process(In Chinese). Ecology and Environmental Sciences,2011,20(2):384—388
[24] 邹国元,张福锁,陈新平,等. 农田土壤硝化-反硝化作用与N2O的排放. 土壤与环境,2001,10(4):273—277
Zou G Y,Zhang F S,Chen X P,et al. Nitrificationdenitrification and N2O emission from arable soil(In Chinese). Soil and Environmental Sciences,2001,10(4):273—277
[25] Zhang M,Chen Z Z,Li Q L,et al. Quantitative relationship between nitrous oxide emissions and nitrogen application rate for a typical intensive vegetable cropping system in Southeastern China. CLEAN - Soil,Air,Water,2015,DOI:10.1002/clen. 201400266
[26] 贾俊香,张曼,熊正琴,等. 南京市郊区集约化大棚蔬菜地N2O的排放. 应用生态学报,2012,23(3):161—166
Jia J X,Zhang M,Xiong Z Q,et al. N2O emission from an intensively managed greenhouse vegetable field in Nanjing suburb,Jiangsu Provence of East China(In Chinese). Chinese Journal of Applied Ecology,2012,23(3):161—166
[27] Wrage N,Velthof G L,Beusichem M L V,et al. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry,2001,33(12/13):1723—1732
[28] 李游. 不同轮作制度和硝化抑制剂DCD对菜地氧化亚氮排放的调控. 武汉:华中农业大学,2012
Li Y. Studies on mitigate nitrous oxide emission by crop rotation system and exert nitrification inhibitor DCD from vegetable field(In Chinese). Wuhan:Huazhong Agricultural University,2012
[29] Zhang M,Fan C H,Li Q L,et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agriculture,Ecosystems & Environment,2015,201:43—50
[30] Ju X T,Xing G X,Chen X P,et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences,2009,106:3041—3046
[31] Peng S,Buresh R J,Huang J,et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development,2010,30(3):649—656
[32] 刘学军,巨晓棠,张福锁. 减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响. 应用生态学报,2004,15(3):458—462
Liu X J,Ju X T,Zhang F S. Effect of reduced N application on N utilization and balance in winter wheatsummer maize cropping system(In Chinese). Chinese Journal of Applied Ecology,2004,15(3):458—462
[33] O’connor P,Hennessy D,Brophy C,et al. The effect of the nitrification inhibitor dicyandiamide(DCD)on herbage production when applied at different times and rates in the autumn and winter. Agriculture,Ecosystems & Environment,2012,152:79—89
[34] Li B,Fan C H,Xiong Z Q,et al. The combined effects of nitrification inhibitor and biochar incorporation onyield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences,2015,12:2003—2017
[35] 聂文静. 氮肥与双氰胺配施对棚室黄瓜生长的影响及其环境效应研究. 河北保定:河北农业大学,2012
Nie W J. Effects of nitrogen fertilizer and DCD application on cucumber growth and environment in greenhouse(In Chinese). Baoding,Hebei:Hebei Agricultural University,2012
[36] 王煌平. 硝化抑制剂及其组合对小白菜产量、品质的影响与土壤残留分析. 福建农业学报,2009,24(5):580—585
Wang H P. Effect of nitrification inhibitors and their combinations on yield and quality of Brassica chinensis and analysis of their inhibitor residue in soil(In Chinese). Fujian Journal of Agricultural Sciences, 2009,24(5):580—585
[37] 孙志梅,刘艳军,梁文举,等. 新型脲酶抑制剂 LNS与双氰胺配合施用对菜田土壤尿素氮转化及蔬菜生长的影响. 土壤通报,2005,36(5):803—805
Sun Z M,Liu Y J,Liang W J,et al. Synergistic effect of a novel urease inhibitor LNS and a nitrification inhibitor DCD on urea-N transformation and vegetable growth(In Chinese). Chinese Journal of Soil Science,2005,36(5):803—805
[38] 倪秀菊,李玉中,徐春英,等. 土壤脲酶抑制剂和硝化抑制剂的研究进展. 中国农学通报,2009,25(12):145—149
Ni X J,Li Y Z,Xu C Y,et al. Advance of research on urease inhibitor and nitrification inhibitor in soil(In Chinese). Chinese Agricultural Science Bulletin,2009,25(12):145—149
Effects of N Reduction and Nitrification Inhibitor on N2O Emissions in Intensive Vegetable Field
CHEN Hao LI Bo XIONG Zhengqin†
(Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation,College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China)
【Objective】 A one-year-round field experiment,monitoring nitrous oxide(N2O)emissions during the growing seasons of four consecutive vegetable crops and yields of the crops,was conducted to investigate effects of reduced application of nitrogen(N)fertilizer and application of chlorinated pyridine(CP),a kind of nitrification inhibitor,on N2O emission and vegetable yield. 【Method】 During the observation period from May,2015 to May,2016,four different species of vegetables were cultivated one by one,namely,amaranth,water spinach,cilantro and baby bok choy. The experiment was designed to have two treatments in N input i.e. 640 and 960 kg hm-2a-1,or a reduced N dose(Nr)and a normal N dose(Nn). Urea was applied as N fertilizer coupled with CP(CP-N)or without CP(N). Phosphate and potassium fertilizers were applied in the form of calcium/magnesium phosphate(12% P2O5)and potassium chloride(60% K2O)at a rate of 960 kg hm-2a-1. All the fertilizers were evenly distributed among the four crops. Each treatment had three replicates. N2O fluxes were monitored with the static-closed chamber method and gas phase chromatography. Air samples were collected normally once a week and once every two or three days during the 7~10 days after the application of N fertilizer. 【Result】 Results show that N2O flux varied significantly with the season in all the treatments,showing a trend of rising higher in the period from May to September and staying lower in the rest of the year. The N2O flux during the growing season of water spinach was the highest and reached N 6 426 µg m-2h-1soon after N fertilization,which could probably be attributed to the high temperature in the season. But no apparent peaks were observed during the growing seasons of cilantro and baby bok choy,when the highest N2O flux reached N 664.9 and 914.9 µg m-2h-1respectively. N2O flux was found significantly and positively related to soil water content and soil temperature(p<0.05)and to N fertilizer application rate too. In treatment Nr,CP-Nr,Nn and CP-Nn,N2O flux varied in the range of N3.2~4 280,5.0~3 293,3.2~6 427 and 1.2~6 097 µg m-2h-1,respectively. During all the four vegetable growing seasons,treatment Nr was always lower than treatment Nn in N2O flux. Compared with treatment Nn,treatment Nr could reduce cumulative N2O emission by 27.1% on average without significantly affecting yield of the crops(p<0.05). In the treatments equal in N application rate,amendment of CP reduced cumulative N2O flux,which indicates that CP is capable of mitigating N2O emission in the vegetable field. During the year of the experiment,treatment Nn was found to be the highest in cumulative N2O emission,reaching up to N 59.2±4.4 kg hm-2,while treatment CP-Nr the lowest,getting down to 31.2±2.2 kg hm-2. Comparison between treatments equal in N application rate,CP amendment reduced total cumulative N2O emission by 29.4% and 26.0%,N2O emission factor by 60.9% and 42.4%,and yield-scaled N2O emission by 32.1% and 30.3%,respectively,in treatment CP-Nn and CP-Nr,without significantly affecting crop yield. In the soil of the vegetable field,the content of-N and-N varied in the range of 10.8~803.9 and 0.9~520.0 mg kg-1,respectively. The average-N content in the soil of treatment Nr,CP-Nr,Nn and CP-Nn was 31.6,33.2,35.7 and 43.3 mg kg-1,respectively,and the average-N content,51.0,50.9,53.8 and 60.4 mg kg-1,respectively. Obviously,with rising N application rate,the content of inorganic N gradually increases in all the treatments. 【Conclusion】Taking into account cumulative N2O emission,N2O emission factor,yield and yield-scaled N2O emission,Treatment CP-Nr is capable of reducing N2O emission and getting high vegetable yields simultaneously. Hence,the practice of reducing N fertilizer application rate by one third coupled with CP amendment can be used as an effective vegetable field management measure in intensive vegetable production to mitigate N2O emission and maintain crop yield.
Intensive vegetable field;Nitrous oxide emission;N reduction;Nitrification inhibitor
S15
A
(责任编辑:卢 萍)
10.11766/trxb201611250525
* 国家自然科学基金面上项目(41471192)和科技部支撑计划项目(2013BAD11B01)资助 Supported by the National Natural
Science Foundation of China(No. 41471192)and the National Key Technology R & D Program of China(No. 2013BAD11B01)† 通讯作者 Corresponding author:熊正琴,教授,主要研究方向为农田碳氮循环与碳氮管理。E-mail:zqxiong@njau.edu.cn
陈 浩(1991—),男,硕士研究生,主要研究方向为碳氮循环与气候变化
2016-11-25;
2014-04-01;优先数字出版日期(www.cnki.net):2017-05-02