APP下载

小学数学文化课的现实困惑与教学突破

2017-08-08吴平

今日教育 2017年8期
关键词:次品鸡兔同笼文化课

吴平

通过小学数学文化的教学,可以渗透一些数学思想和数学方法,能为学生学会学习打下坚实的基础,还可以培养学生的人文底蕴和科学精神,这些也符合中国学生发展核心素养的要求。因此,如何上好小学数学文化课是一个值得理论界与教学一线联合研究的课题。

一、什么是小学数学文化课

小学数学文化课是以数学文化作为教学内容,旨在增强和激发学生学习数学的兴趣,深刻理解数学的内涵,开拓学科视野,提高数学素养的一种数学课型。

上好小学数学文化课的前提是要对小学数学文化有一定的认识。顾沛曾说,数学文化狭义上指数学的思想、方法、观点、语言以及它们的形成和发展,广义上还包括数学家、数学史、数学美、数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系。西南大学宋乃庆研究团队认为,数学文化是数学知识、数学精神、数学思想、数学方法、数学思维、数学意识、数学事件等的综合。

二、教师上小学数学文化课的困惑

数学教师从事小学数学文化课的教学主要有以下几方面的困惑。

(一)数学文化知识欠缺

作为普通的数学老师,虽然有丰富的数学教学经验,但是自身对数学文化缺乏系统的学习和深入的研究。数学老师在师范教育里所学的都是按知识体系编排的数学知识或者相关的教材教法,其中有数学思想和方法的渗透,但缺乏从数学文化的视角进行相关的数学文化的学习。

(二)教师培训相对缺乏

《义务教育数学课程标准(2011年版)》和相配套的小学数学教材出来后,北碚区对全员数学教师进行了为期三天的新课标培训,并连续多年对数学教师进行分册教材培训,细到对每个例题的理解和处理。而对小学数学文化课的教学,却没有对数学教师进行相关的理念培训和教材培训。

(三)教学设计定位不清

教师上小学数学文化课面临的重要问题就是如何进行教学设计。小学数学文化课到底是数学课、文化课、故事课、游戏课,还是数学文化课;到底是解题,还是数学文化的介绍;如何将几幅静态的连环画通过教师精心的教学设计生动有趣地呈现在课堂教学中,如何上出小学数学文化课的味道来等,这些都是在教学设计中要面临的问题。

(四)优秀课例参考较少

到底什么样的小学数学文化课才是一节好课,老师们心中没有标准。同样,由于只有部分实验学校在进行实验,老师们对优秀的数学文化课例见得少或没有见过,都是自己或者学校数学团队在摸索,值得参考借鉴的优秀课例较少。

三、如何上好小学数学文化课

小学数学文化课是一门新兴的课程,教师们都没有经验与积累。数学文化课该如何上呢?

(一)准确定位教学目标

小学数学文化课面临的首要问题就是确定教学目标。教学目标是教学的出发点和归宿,是教学活动的灵魂。只有教学目标定位准确了才能上出符合数学文化要求的数学文化课。如,宋乃庆团队编写的《小学数学文化丛书》和《小学数学文化读本》,其中的每个故事都有明确的分类。如,“千手观音的震撼”是属于艺术与数学,可以拟定如下教学目标:(1)理解从不同角度拍摄物体会得到不同的结果,会让人产生不同的感受。(2)初步了解构图的“三分法则”,感受“三分法则”拍摄照片的效果,尝试用“三分法则”进行模拟拍摄。(3)在用数学的眼光分析摄影作品的过程中,体会摄影与数学的联系,感受数学和艺术的魅力。以上三条教学目标中,第一条和第二条是理解和初步了解,第三条是教学的重点。

(二)降低知识难度

小学数学文化课中必然会涉及很多的数学知识,如,“中国现代数学之父——华罗庚”中的统筹法中的泡茶问题;优选法中的二分法、三分法等。经过大量的教学实践,我们认为小学数学文化课中的数学知识的教学一定要降低难度。如用三分法找次品,“在3个玻璃球中,有1个球较轻,如果用天平来称,最少需要称多少次才能保证找到次品?”通过教学让学生理解,只需称一次就可以找到次品,即选的两个,要么一样重,剩下的是次品;要么有轻有重,轻的是次品,剩下的一个不用再称。然后,引导学生去研究4个球、9个球都是需要称2次才能保证找到次品。对于称的次数是3的N次方这个规律,如果在課堂上让学生去探究理解,就会把数学文化课上成奥数课、思维训练课,那就失去了数学文化课的教学意义。教学中对于三分法如何分组、如何找次数、称的次数与3的几次方有关等知识,我们采用了视频与画外音相结合的方式进行介绍,图文并茂,声音与过程同步展现思维过程,既降低了数学思维的难度,又体现了华罗庚对三分法的研究以及总结出的规律,感受华罗庚的伟大成就。

(三)提升已有经验

很多小学数学文化课,都需要调动学生已有的知识经验或者课前查询大量与本节数学文化课相关的资料,这些知识经验或查询的资料怎样才能用好呢?实践告诉老师,对于这个环节教学一定要对已有经验进行提升。

如,“中国历史名题——鸡兔同笼”课前布置学生去了解“鸡兔同笼”的相关资料。课堂学生交流:鸡兔同笼的来历,鸡兔同笼的解法,还有鸡兔同笼的应用等,这些反馈都是零散的、不完整的,并没有引起全体学生的注意,教师应系统地对“鸡兔同笼”起源、发展、应用等进行归纳整理介绍。“鸡兔同笼”的最早记录在我国古代1500多年前的《孙子算经(下卷)》31题里,原题是“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?”这个问题蕴含了丰富的数学思想,不仅可以解决鸡兔同笼问题还可以解决其他类似的问题。明代程大位所著的《算法统宗》也收录了这个问题,其中对问题的叙述把“雉”改成了“鸡”,鸡兔同笼的说法就沿用至今。“鸡兔同笼”问题后来又传到了日本成为“鹤龟算”。“鸡兔同笼”问题是我国民间流传下来的一类数学妙题,是前人探究出来的知识成果,它集题目的趣味性、解法的多样性、应用的广泛性于一体,具有强大的教育功能和价值。

(四)数学和文化并重

对于小学数学文化课,教学设计时就要思考这节课的数学和文化两重元素。数学文化课既要有数学味,还要有文化味,因此对教学设计就有更高的要求。

如,“玩玩一笔画”中,要挖掘其中适合学生的数学元素,如知道一笔画是指下笔后笔尖不能离开纸,每条线只能画一次而不能重复;通过探究发现只有奇点数为0或2时,才能一笔画;若奇点为0个,画时从任意一点开始,最后回到这一点;若奇点为2个,画时必须以一个奇点开始,到另一个奇点结束。该课的文化元素来源:18世纪,风景秀丽的哥尼斯堡城中有一条河,河的中间有两个小岛,河的两岸与两岛之间共建有七座桥,城中的居民经常沿河过桥散步。不知从什么时候起,脚下的桥梁触发了人们的灵感,一个有趣的问题在居民中传开了:谁能够一次走遍所有的7座桥,而且每座桥都只通过一次,最后仍回到出发点?这就是有名的“七桥问题”。它难住了哥尼斯堡的所有居民和学者。哥尼斯堡也因“七桥问题”而出了名。数学家欧拉也对这个问题非常感兴趣,并展开了研究。他把每一块陆地考虑成一个点,连接两块陆地的桥以线表示,就把“七桥问题”转化为了一个几何问题——一笔画问题。欧拉在他29岁时,经过一年的研究,于1736年递交了一份题为“哥尼斯堡七座桥”的论文,圆满地解决了这一问题,同时开创了数学新的分支——图论,为现在的拓扑学打下了基础。

猜你喜欢

次品鸡兔同笼文化课
运用推理找次品
从鸡兔同笼谈起
找次品
中职文化课教学存在的问题和原因分析
用不同方法解决“鸡兔同笼”问题
巧妙找次品
碰撞:故宫文化课与英国中文热
找次品的窍门
“鸡兔同笼”的解法
激励理论在中职文化课学习中的应用