大鼠脑β—淀粉样蛋白表达及神经行为学与高胆固醇水平的关系
2017-08-04梁倩唐伟刘文博
梁倩++++++唐伟++++++刘文博++++++王威
[摘要] 目的 研究大鼠腦β-淀粉样蛋白表达及神经行为学与高胆固醇水平的关系,以明确辛伐他汀对阿尔茨海默病(AD)防治有一定作用。 方法 将32只健康Wistar大鼠按随机数字表法分为普通组和高脂组,每组16只。饲养2周后,再将普通组随机分为普通药物组和普通安慰剂组,每组8只;将高脂组大鼠随机分为高脂药物组、高脂安慰剂组,每组8只。药物组16只大鼠给予辛伐他汀灌胃,安慰剂组给同体积安慰剂(蒸馏水)灌胃。免疫组织化学法测定脑内β-淀粉样蛋白(Aβ)蛋白的表达,Morris水迷宫实验测试大鼠的学习和记忆能力。 结果 高脂药物组大鼠前额皮层Aβ1-42的蛋白表达较高脂安慰剂组减少(P < 0.05);高脂药物组与普通安慰剂组、普通药物组之间比较,差异无统计学意义(P > 0.05)。与高脂安慰剂组比较,高脂药物组大鼠逃避潜伏期缩短(P < 0.05),穿台次数增多(P < 0.05);高脂药物组与普通安慰剂组、普通药物组之间比较,差异无统计学意义(P > 0.05)。 结论 辛伐他汀对高胆固醇血症大鼠前额皮层Aβ1-42的蛋白表达有一定影响,同时伴随大鼠神经行为学改变。
[关键词] 高胆固醇;辛伐他汀;β-淀粉样蛋白;神经行为学
[中图分类号] R74 [文献标识码] A [文章编号] 1673-7210(2017)06(a)-0024-04
The relationship between the expression of brain amyloid beta protein along with neural behavior in rats with hypercholesterolemia level
LIANG Qian1 TANG Wei2 LIU Wenbo1 WANG Wei1
1.Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Liaoning Province, Dalian 116001, China; 2.Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Liaoning Province, Dalian 116021,China
[Abstract] Objective To research the relationship between the expression of brain amyloid beta (Aβ) protein along with neural behavior in rats with hypercholesterolemia level, in order to clarify the preventive effect of simvastatin on Alzheimer's disease. Methods The 32 Wistar rats were divided into normal group and high cholesterol group according to random number table, with 16 rats in each group. After two weeks, the rats in the normal group were randomly divided into normal drug group and normal placebo group, with 8 rats in each group; and the rats in the high cholesterol group were randomly divided into high fat drug group and high fat placebo group, with 8 rats in each group. And then simvastatin were filled into the stomach of the 16 drug group rats, the same volume placebo (distilled water) were filled into the stomach of placebo group. Immunohistochemical method was used to determine the expression of Aβ protein in brain, Morris water maze was used to test the cognitive and memory abilities in rats. Results Aβ1-42 protein expression of the prefrontal cortex in the high fat drug group was less than that of high fat placebo group (P < 0.05); and there was no significant difference in the high fat drug group, normal placebo group and normal drug group (P > 0.05). In the high fat drug group, the escape latency was decreased than that of high fat placebo group (P < 0.05), times of crossing platform was increased (P < 0.05); and there was no significant difference in the high fat drug group, normal placebo group and normal drug group (P > 0.05). Conclusion Simvastatin has some effects on the expression of Aβ1-42 protein in prefrontal cortex of hypercholesterolemic rats, and accompanied by neurobehavioral changes in rats.
[Key words] High cholesterol; Simvastatin; Beta amyloid protein; Neural behavior
阿尔茨海默病(Alzheimer′s disease,AD)是常见的中枢神经系统变性疾病,主要表现为进行性记忆减退和认知功能障碍,据流行病学统计,全世界至少有2000~3000万AD患者[1]。虽然近年来AD的研究取得较大的进展,但AD的病因迄今未明,目前对AD的治疗没有明确有效的措施。AD的危险因素除了遗传,年龄增长,载脂蛋白E基因型以外,糖尿病,高热量的饮食,血脂异常及吸烟与AD的发生有一定关系[2]。AD的主要病理改变是老年斑的形成,神经元纤维缠结以及广泛神经元缺失。老年斑的核心是β淀粉樣蛋白(β-amyloid protein,Aβ),研究表明血脂代谢异常可影响Aβ的表达[3-4]。目前研究已经证实,AD的发生率与血清胆固醇水平明确相关,他汀除降脂作用外,还能减少Aβ的生成,减少载脂蛋白E分泌,促进神经传导,防治痴呆[5-6]。
本研究采用他汀类药物干预血脂水平,观察治疗后大鼠脑Aβ表达及神经行为学变化,以研究他汀在改善认知功能方面的作用和机制。
1 材料与方法
1.1 实验动物及试剂
健康Wistar大鼠32只,体重为150~170 g,SPF级,由大连医科大学实验动物中心提供,合格证号:SCXK2015-0002。高胆固醇饲料(胆酸钠0.3%、胆固醇1%、猪油10%和普通鼠饲料88.7%)由北京华阜康生物科技股份有限公司提供,辛伐他汀(京必舒心10 mg/片)由浙江京新药业股份有限公司提供。
1.2 试验分组
将32只Wistar大鼠(14周龄)按随机数字表法分为高脂组,普通组,每组16只。高脂组给予高脂饲料喂养,普通组给予普通饲料喂养,两组大鼠均喂养2周;再次分组,高脂组随机分为高脂药物组和高脂安慰剂组,每组8只,同样将普通组也随机分为普通药物组和普通安慰剂组,每组8只。其中16只药物组大鼠给予辛伐他汀灌胃,每天每公斤体重给予2 mg,16只安慰剂组大鼠给予同体积蒸馏水灌胃。8周后取尾血,测定血清胆固醇和低密度脂蛋白胆固醇,进行神经行为测试并取材。
1.3 空间学习记忆训练
定位航行实验:对大鼠学习能力检测,每天训练两次,上午1 min,下午1 min。将水迷宫的水池根据东南西北等分为4个象限,平台置于第四象限,距离池壁20 cm,平台直径为6 cm、高25 cm,水位超过平台1 cm。试验前,让小鼠自由游泳熟悉迷宫环境。试验时,在第四象限放置平台,其他三个象限作为大鼠的入水象限,将大鼠头面向池壁,象限1/2弧度处放入水中,记录1 min内大鼠到达平台所需的时间,称为逃避潜伏期,如果大鼠1 min内没有爬上平台,测试人员可引导其上台,上台后大鼠需在平台站立适应10 s,1 min后进行下一次训练,潜伏期记录为1 min。一共训练5 d,将第5天的轨迹作为其学习成绩。
空间探索实验:对大鼠记忆能力检测,在第6天将平台撤去,与训练时一样将大鼠放入水中,让其在水中待1 min,图像采集大鼠的运动,记录1 min内大鼠的运动轨迹和穿越原有平台位置的次数。
1.4 取材固定
Morris水迷宫试验后次日,使用4%水合氯醛(10 mL/kg)对大鼠进行腹腔注射麻醉,打开胸腔暴露心脏,将穿刺针进入左心室找至主动脉,剪开右心耳,先灌注100 mL生理盐水,之后缓慢灌注120 mL 4%多聚甲醛固定,直至大鼠四肢及尾部僵硬为灌流固定充分,然后断头取脑组织,将其投入到4%多聚甲醛中固定,用于免疫组化标本制备。
1.5 免疫组化检测小鼠Aβ1-42表达水平
石蜡切片置60℃烤箱烘烤2 h;常规脱蜡,蒸馏水洗2 min;微波修复抗原20 min;3% H2O2溶液阻断过氧化物酶,10 min;PBS洗10 min×3次;滴加Aβ1-42(1∶100),4℃过夜;于冰箱中取出切片后室温静止20 min,PBS洗10 min×3次;加二抗,37℃孵育50 min,PBS洗10 min ×3次;DAB显色2~3 min;复染、透明后封片,显微镜下观察。Aβ1-42的免疫阳性表现为神经元的胞浆、神经纤维处可见棕黄色颗粒样着色。
1.6 统计学方法
应用SPSS 17.0统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。
2 结果
2.1 四组大鼠血脂比较
高脂药物组大鼠血清低密度脂蛋白胆固醇(LDL-C)、胆固醇(CHO)水平较高脂安慰剂组大鼠明显降低(P < 0.05),而高脂药物组、普通安慰剂组和普通药物组之间比较,差异无统计学意义(P > 0.05)。见表1。
2.2 四组大鼠前额皮质Aβ1-42的蛋白表达比较
与高脂安慰剂组比较,高脂药物组蛋白表达减少(P < 0.05);而高脂药物组、普通安慰剂组和普通药物组之间比较,差异无统计学意义(P > 0.05)。结果见表2、图1(封三)。
2.3 四组大鼠水迷宫实验结果比较
与高脂安慰剂组比较,高脂药物组大鼠逃避潜伏期缩短,穿台次数增多(P < 0.05);而高脂药物组、普通安慰剂组和普通药物组之间比较,差异无统计学意义(P > 0.05)。结果见表3、图2。
3 讨论
AD是老年人常见的神经系统变性疾病,特点为持续进行性的智能减退而无缓解,随着我国人口的老龄化,AD俨然已成为一个严重的社会问题,因此,AD的治疗日益引起人们的关注[7]。
目前通過流行病学的研究发现,AD的发生和演变与日常生活行为有密切关系。良好的生活习惯,比如低盐、低脂、低糖饮食,长期规律的锻炼,保持良好睡眠等,都可以延缓AD的进程[8-9]。研究发现,高脂、高热量饮食的国家AD发病率较低脂、低热量的国家高,原因认为与高脂肪、高热量可破坏神经元树突的完整性,刺激小胶质细胞的增生,增加机体产生炎性反应,影响脑组织血液循环,引起认知功能的下降[10-11]。细胞外老年斑的形成是AD的一个主要病理特征,而Aβ是老年斑的主要组成成分,Aβ由可溶状态变为不可溶状态,形成沉淀,经过一系列复杂的连串反应,产生神经毒性,导致神经元死亡,引起AD的发生发展[12]。研究发现血液中胆固醇每增加10%,脑中Aβ斑块就会增加一倍[13],而且研究还发现高水平的胆固醇可直接影响β淀粉样蛋白前体的表达,导致β淀粉样蛋白的大量生成和沉积,促进AD的发生与发展,而改用普通饮食可以减少Aβ的生成[14-18]。这些促使设想能否通过改变患者的血脂负荷及构成,或通过改变微血管的内皮功能,降低胆固醇,从而减少Aβ的形成,延缓AD的发生和进程。他汀类药物在改善胆固醇代谢,降低血清中胆固醇含量在临床中已经取得令人满意的效果[19-20]。有研究发现服用他汀类药物的人AD发病率降低70%,这一结果为胆固醇代谢异常导致AD提供了一个非常有力的证据。进一步研究他汀类药物与AD的关系,将为AD的防治开辟了新的途径。
记忆、学习能力减退是AD患者早期且比较突出的表现,对于大鼠相关能力的检测方法目前常用的有Y迷宫、Morris水迷宫、物体识别实验等[21]。Morris水迷宫是目前国际上使用频繁、有效的检测方法,本实验检测结果显示:高脂药物组逃避潜伏期较高脂安慰剂组缩短,穿台次数增多(P < 0.05),说明辛伐他汀能够改善高胆固醇血症大鼠学习记忆能力。通过免疫组化检测Aβ1-42 的表达进一步验证辛伐他汀对Aβ1-42表达的影响进一步验证其机制。结果提示高脂药物组大鼠前额皮层Aβ1-42的蛋白表达较高脂安慰剂组的蛋白表达明显减少(P < 0.05);而高脂药物组、普通安慰剂组和普通药物组之间比较,差异无统计学意义(P > 0.05)。这一结果提示辛伐他汀改善高脂血症大鼠学习能力与Aβ1-42的表达明显相关,降低Aβ1-42可能是用他汀类药物治疗AD的机制。
[参考文献]
[1] Gustafson DR,Clare MM,Scarmeas N,et al. New perspectives on Alzheimer′s disease and nutrition [J]. J Alzheimers Dis,2015,46(4):1111-1127.
[2] Haight TJ,Bryan RN,Erus G,et al. Vascular risk factors,cerebrovascular reactivity,and the default-mode brain network [J]. Neuroimage,2015,115(4):7-16.
[3] Leonova EI,Galzitskaya OV. Role of syndecans in lipid metabolism and human diseases [J]. Adv Exp Med Biol,2015,885(10):241-258.
[4] Hashimoto M,Hossain S,Katakura M,et al. The binding of Aβ1-42 to lipid rafts of RBC is enhanced by dietary docosahexaenoic acid in rats:implicates to Alzheimer′s disease [J]. Biochim Biophys Acta,2015,848(6):1402-1409.
[5] Nina E,Ganesh M,Dennis J,et al. Cholesterol level and statin use in alzheimer disease [J]. Arch Neurol,2011,68(11):1385-1392.
[6] Liang T,Li R,Cheng O. Statins for treating Alzheimer′s disease:truly ineffective?[J]. Eur Neurol,2015,73(5-6):360-366.
[7] Peters C,Espinoza MP,Gallegos S,et al. Alzheimer′s Aβ interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity [J]. Neurobiol Aging,2015,36(3):1369-1377.
[8] Ahmadian-Attari MM,Ahmadiani A,Kamalinejad M,et al. Treatment of Alzheimer′s disease in Iranian traditional medicine [J]. Iran Red Crescent Med J,2015,17(1):52-59.
[9] Lim AS,Kowgier M,Yu L,et al. Sleep fragmentation and the risk of incident Alzheimer′s disease and cognitive decline in older persons [J]. Sleep,2013,36(7):1027.
[10] Fellows K,Uher T,Browne RW,et al. Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients [J]. J Lip Res,2015,56(10):2010-2018.
[11] Kuo PH,Lin CI,Chen YH,et al. A high-cholesterol diet enriched with polyphenols from oriental plums(prunus salicina)improves cognitive function and lowers brain cholesterol levels and neurodegenerative-related protein expression in mice [J]. Br J Nutr,2015,113(10):1550-1557.
[12] Sachdeva AK,Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer′s disease [J]. J Nutr Biochem,2015, 26(7):736-744.
[13] Kumar A,Seghal N,Naidu PS,et al. Colchicines-induced neurotoxicity as an animal model of sporadic dementia of Alzheimer′s type [J]. Pharmacol Rep,2007,59(3):274-283.
[14] Chen X,Hui L,Geiger JD. Role of LDL cholesterol and endolysosomes in amyloidogenesis and Alzheimer′s disease [J]. J Neurol Neurophysiol,2014,5(5):172-187.
[15] Gupta A,Iadecola C. Impaired Aβ clearance:a potential link between atherosclerosis and Alzheimer′s Disease [J]. Front Aging Neurosc,2015,7(13):115.
[16] Orr ME,Salinas A,Buffenstein R,et al. Mammalian target of rapamycin hyperactivity mediates the detrimental effects of a high sucrose diet on Alzheimer′s disease pathology [J]. Neurobiol Aging,2014,35(6):1233-1242.
[17] Moreira PI. High-sugar diets,type 2 diabetes and Alzheimer′s disease [J]. Curr Opin Clin Nutr Metab Care,2013,16(4):440-445.
[18] Maesako M,Uemura K,Kubota M,et al. Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice [J]. J Biol Chem,2012, 287(27):23024-23033.
[19] Kristensen ML,Christensen PM,Hallas J,et al. The effect of statins on average survival in randomised trials,an analysis of end point postponement [J]. BMJ Open,2015,5(9):118-136.
[20] Li L,Zhang M,Su F,et al. Combination therapy analysis of ezetimibe and statins in Chinese patients with acute coronary syndrome and type 2 diabetes [J]. Lipids Health Dis,2015,14(1):10-11.
[21] Galeano P,Martino Adami PV,Do Carmo S,et al. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer′s disease [J]. Front Behav Neurosci,2014,8(9):321-336.
(收稿日期:2016-12-17 本文編辑:李岳泽)