金融行业大数据用户画像实践
2017-08-04佚名
佚名
80后、90后总计共有3.4亿人口,并日益成为金融企业主要的消费者,但是他们的金融消费习惯正在改变,他们不愿意到金融网点办理业务,不喜欢被动接受金融产品和服务。年轻人将主要的时间都消费在移动互联网上,消费在智能手机上。平均每个人,每天使用智能手机的时间超过了3小时,年轻人可能会超过4个小时。浏览手机已经成为工作和睡觉之后,人类第三大生活习惯,移动APP也成为所有金融企业的客户入口、服务入口、消费入口、数据入口。
金融企业越来越难面对面接触到年轻人,无法像过去一样,从对话中了解年轻人的想法,了解年轻人金融产品的需求。
用户画像的目的
用户画像是在了解客户需求和消费能力,以及客户信用额度的基础上,寻找潜在产品的目标客户,并利用画像信息为客户开发产品。
用户画像一词具有很重的场景因素,不同企业对于用户画像有着不同的理解和需求。例如,金融行业和汽车行业对于用户画像需求的信息完全不一样,信息纬度也不同,对画像结果要求也不同。每个行业都有一套适合自己行业的用户画像方法,但是其核心都是为客户服务,为业务场景服务。用户画像本质就是从业务角度出发对用户进行分析,了解用户需求,寻找目标客户。另外一个方面就是,金融企业利用统计的信息,开发出适合目标客户的产品。 从商业角度出发的用户画像对企业具有很大的价值,用户画像目的有两个:一个是从业务场景出发,寻找目标客户。另外一个就是,参考用户画像的信息,为用户设计产品或开展营销活动。
市场上用户画像的方法很多,许多企业也提供用户画像服务,将用户画像提升到很有规格的一件事。金融企业是最早开始用户画像的行业。由于拥有丰富的数据,金融企业在进行用户画像时,对众多纬度的数据无从下手,总是认为用户画像数据纬度越多越好,画像数据越丰富越好,某些输入的数据还设定了权重甚至建立了模型,搞得用户画像成为一个巨大而復杂的工程。但是费很大力气进行了画像之后,却发现只剩下了用户画像,和业务相聚甚远,没有办法直接支持业务运营,投入精力巨大但是回报微小,可以说是得不偿失,无法向领导交代。
金融企业用户画像的基本步骤
参考金融企业的数据类型和业务需求,可以将金融企业用户画像工作进行细化。基本上从数据集中到数据处理,从强相关数据到定性分类数据,从引入外部数据到依据业务场景进行筛选目标用户。
画像相关数据的整理和集中金融企业内部的信息分布在不同的系统中。一般情况下,人口属性信息主要集中在客户关系管理系统,信用信息主要集中在交易系统和产品系统之中,也集中在客户关系管理系统中,消费特征主要集中在渠道和产品系统中。
兴趣爱好和社交信息需要从外部引入,例如客户的行为轨迹可以代表其兴趣爱好和品牌爱好,移动设备到位置信息可以提供较为准确的兴趣爱好信息。社交信息,可以借助于金融行业自身的文本挖掘能力进行采集和分析,也可以借助于厂商的技术能力在社交网站上直接获得。
社交信息往往是实时信息,商业价值较高,转化率也较高,是大数据预测方面的主要信息来源。例如用户在社交网站上提出罗马哪里好玩的问题,就代表用户未来可能有出国旅游的需求;如果客户在对比两款汽车的优良,客户购买汽车的可能性就较大。金融企业可以及时介入,为客户提供金融服务。
客户画像数据主要分为五类,人口属性、信用信息、消费特征、兴趣爱好、社交信息。这些数据都分布在不同的信息系统,金融企业都上线了数据仓库(DW),所有画像相关的强相关信息都可以从数据仓库里面整理和集中,并且依据画像商业需求,利用跑批作业,加工数据,生成用户画像的原始数据。
数据仓库成为用户画像数据的主要处理工具。依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。用户画像的纬度信息不是越多越好,只需要找到这几类画像信息强相关信息,同业务场景强相关信息,同产品和目标客户强相关信息即可。根本不存在360度的用户画像信息,也不存在丰富的信息可以完全了解客户,另外数据的实效性也要重点考虑。
找到同业务场景强相关数据依据用户画像的原则,所有画像信息应该是五大分类的强相关信息。强相关信息是指同业务场景强相关信息,可以帮助金融行业定位目标客户,了解客户潜在需求,开发需求产品。
只有强相关信息才能帮助金融企业有效结合业务需求,创造商业价值。例如姓名、手机号、家庭地址就是能够触达客户的强人口属性信息,收入、学历、职业、资产就是客户信用信息的强相关信息。差旅人群、境外游人群、汽车用户、旅游人群、母婴人群就是消费特征的强相关信息。摄影爱好者、游戏爱好者、健身爱好者、电影人群、户外爱好者就是客户兴趣爱好的强相关信息。社交媒体上发表的旅游需求,旅游攻略,理财咨询,汽车需求,房产需求等信息代表了用户的内心需求,是社交信息场景应用的强相关信息。
金融企业内部信息较多,在用户画像阶段不需要对所有信息都采用,只需要采用同业务场景和目标客户强相关的信息即可,这样有助于提高产品转化率,降低投资回报率(ROI),有利于简单找到业务应用场景,在数据变现过程中也容易实现。
千万不要将用户画像工作搞得过于复杂,同业务场景关系不大,这样就让很多金融企业特别是领导失去用户画像的兴趣,看不到用户画像的商业价值,不愿意在大数据领域投资。为企业带来商业价值才是用户画像工作的主要动力和主要目的。
对数据进行分类和标签化(定量to定性)金融企业集中了所有信息之后,依据业务需求,对信息进行加工整理,需要对定量的信息进行定性,方便信息分类和筛选。这部分工作建议在数据仓库进行,不建议在大数据管理平台(DMP)里进行加工。
定性信息进行定量分类是用户画像的一个重要工作环节,具有较高的业务场景要求,考验用户画像商业需求的转化。其主要目的是帮助企业将复杂数据简单化,将交易数据定性进行归类,并且融入商业分析的要求,对数据进行商业加工。例如可以将客户按照年龄区间分为学生、青年、中青年、中年、中老年、老年等人生阶段。
源于各人生阶段的金融服务需求不同,在寻找目标客户时,可以通过人生阶段进行目标客户定位。企业可以利用客户的收入、学历、资产等情况将客户分为低、中、高端客户,并依据其金融服务需求,提供不同的金融服务。可以参考其金融消费记录和资产信息,以及交易产品,购买的产品,将客户消费特征进行定性描述,区分出电商客户,理财客户,保险客户,稳健投资客户,激进投资客户,餐饮客户,旅游客户,高端客户,公务员客户等。利用外部的数据可以将定性客户的兴趣爱好,例如户外爱好者,奢侈品爱好者,科技产品发烧友,摄影爱好者,高端汽车需求者等信息。将定量信息归纳为定性信息,并依据业务需求进行标签化,有助于金融企业找到目标客户,并且了解客戶的潜在需求,为金融行业的产品找到目标客户,进行精准营销,降低营销成本,提高产品转化率。
另外金融企业还可以依据客户的消费特征、兴趣爱好、社交信息及时为客户推荐产品,设计产品,优化产品流程。提高产品销售的活跃率,帮助金融企业更好地为客户设计产品。
依据业务需求引入外部数据 利用数据进行画像的目的主要是为业务场景提供数据支持,包括寻找到产品的目标客户和触达客户。金融企业自身的数据不足以了解客户的消费特征、兴趣爱好、社交信息。
金融企业可以引入外部信息来丰富客户画像信息,例如引入银联和电商的信息来丰富消费特征信息,引入移动大数据的位置信息来丰富客户的兴趣爱好信息,引入外部厂商的数据来丰富社交信息等。外部信息的纬度较多,内容也很丰富,但是如何引入外部信息是一项具有挑战的工作。外部信息在引入时需要考虑几个问题,分别是外部数据的覆盖率,如何和内部数据打通,和内部信息的匹配率,以及信息的相关程度,还有数据的鲜活度,这些都是引入外部信息的主要考虑纬度。
外部数据鱼龙混杂,数据的合规性也是金融企业在引入外部数据时的一个重要考虑,敏感的信息例如手机号、家庭住址、身份证号,在引入或匹配时都应该注意隐私问题,基本的原则是不进行数据交换,可以进行数据匹配和验证。
外部数据不会集中在某一家,需要金融企业花费大量时间进行寻找。外部数据和内部数据的打通是个很复杂的问题,手机号/设备号/身份证号的MD5数值匹配是一种好的方法,不涉及隐私数据的交换,可以进行唯一匹配。依据行业内部的经验,没有一家企业外部数据可以满足企业要求,外部数据的引入需要多方面数据。一般情况下,数据覆盖率达到70%以上,就是一个非常高的覆盖率。覆盖率达到20%以上就可以进行商业应用了。金融行业外部数据源较好合作方有银联、芝麻信用、运营商、中航信、腾云天下、腾讯、微博、前海征信,各大电商平台等。市场上数据提供商已经很多,并且数据质量都不错,需要金融行业一家一家去挖掘,或者委托一个厂商代理引入也可以。独立第三方帮助金融行业引入外部数据可以降低数据交易成本,同时也可以降低数据合规风险,是一个不错的尝试。另外各大城市和区域的大数据交易平台,也是一个较好的外部数据引入方式。
按照业务需求进行筛选客户(DMP的作用)用户画像主要目的是让金融企业挖掘已有的数据价值,利用数据画像技术寻找到目标客户和客户的潜在需求,进行产品推销和设计改良产品。
用户画像从业务场景出发,实现数据商业变现的重要方式。用户画像是数据思维运营过程中的一个重要闭环,帮助金融企业利用数据进行精细化运营和市场营销,以及产品设计。用户画像就是一切以数据商业化运营为中心,以商业场景为主,帮助金融企业深度分析客户,找到目标客户。
DMP(大数据管理平台)在整个用户画像过程中起到了一个数据变现的作用。从技术角度来讲,DMP将画像数据进行标签化,利用机器学习算法来找到相似人群,同业务场景深度结合,筛选出具有价值的数据和客户,定位目标客户,触达客户,对营销效果进行记录和反馈。大数据管理平台DMP过去主要应用在广告行业,在金融行业应用不多,未来会成为数据商业应用的主要平台。
DMP可以帮助信用卡公司筛选出未来一个月可能进行分期付款的客户,电子产品重度购买客户,筛选出金融理财客户,筛选出高端客户(在本行资产很少,但是在他行资产很多),筛选出保障险种,寿险、教育险、车险等客户,筛选出稳健投资人、激进投资人、财富管理等方面等客户,并且可以触达这些客户,提高产品转化率,利用数据进行价值变现。DMP还可以了解客户的消费习惯、兴趣爱好,以及近期需求,为客户定制金融产品和服务,进行跨界营销。利用客户的消费偏好,提高产品转化率,提高用户黏度。
DMP还作为引入外部数据的平台,将外部具有价值的数据引入到金融企业内部,补充用户画像数据,创建不同业务应用场景和商业需求。特别是移动大数据、电商数据、社交数据的应用,可以帮助金融企业来进行数据价值变现,让用户画像离商业应用更加近一些,体现用户画像的商业价值。用户画像的关键不是360度分析客户,而是为企业带来商业价值,离开了商业价值谈用户画像就是耍流氓。金融企业用户画像项目一定要从业务需求出发,从强相关数据出发,从业务场景应用出发。用户画像的本质就是深度分析客户,掌握具有价值数据,找到目标客户,按照客户需求来定制产品,利用数据实现价值变现。
金融行业用户画像实践
银行用户画像实践介绍 银行具有丰富的交易数据、个人属性数据、消费数据、信用数据和客户数据,用户画像的需求较大。但是缺少社交信息和兴趣爱好信息。
到银行网点来办业务的人年纪偏大,未来消费者主要在网上进行业务办理。银行接触不到客户,无法了解客户需求,缺少触达客户的手段。分析客户、了解客户、找到目标客户、为客户设计其需要的产品,成了银行进行用户画像的主要目的。银行的主要业务需求集中在消费金融、财富管理、融资服务,用户画像要从这几个角度出发,寻找目标客户。银行的客户数据很丰富,数据类型和总量较多,系统也很多。可以严格遵循用户画像的五大步骤。先利用数据仓库进行数据集中,筛选出强相关信息,对定量信息定性化,生成DMP需要的数据。
利用DMP进行基础标签和应用定制,结合业务场景需求,进行目标客户筛选或对用户进行深度分析。同时利用DMP引入外部数据,完善数据场景设计,提高目标客户精准度。找到触达客户的方式,对客户进行营销,并对营销效果进行反馈,衡量数据产品的商业价值。利用反馈数据来修正营销活动和提高ROI。形成市场营销的闭环,实现数据商业价值变现的闭环。
另外,DMP还可以深度分析客户,依據客户的消费特征、兴趣爱好、社交需求、信用信息来开发设计产品,为金融企业的产品开发提供数据支撑,并为产品销售方式提供场景数据。
简单介绍一些DMP可以做到的数据场景变现。A 寻找分期客户利用发卡机构数据+自身数据+信用卡数据,发现信用卡消费超过其月收入的用户,推荐其进行消费分期。B 寻找高端资产客户利用发卡机构数据+移动位置数据(别墅/高档小区)+物业费代扣数据+银行自身数据+汽车型号数据,发现在银行资产较少、在其他行资产较多的用户,为其提供高端资产管理服务。C 寻找理财客户利用自身数据(交易+工资)+移动端理财客户端/电商活跃数据。发现客户将工资/资产转到外部,但是电商消费不活跃客户,其互联网理财可能性较大,可以为其提供理财服务,将资金留在本行。D 寻找境外游客用户利用自身卡消费数据+移动设备位置信息+社交号境外强相关数据(攻略,航线,景点,费用),寻找境外游客户为其提供金融服务。E 寻找贷款客户利用自身数据(人口属性+信用信息)+移动设备位置信息+社交购房/消费强相关信息,寻找即将购车/购房的目标客户,为其提供金融服务(抵押贷款/消费贷款)。
保险行业用户画像 保险行业用户画像实践保险行业的产品是一个长周期产品,保险客户再次购买保险产品的转化率很高,经营好老客户是保险公司一项重要任务。保险公司内部的交易系统不多,交易方式不是很复杂,数据主要集中在产品系统和交易系统之中,客户关系管理系统中也包含了丰富信息,但是数据集中在很多保险公司还没有完成,数据仓库建设可能需要在用户画像建设前完成。
保险公司主要数据有人口属性信息,信用信息,产品销售信息,客户家人信息。缺少兴趣爱好、消费特征、社交信息等信息。保险产品主要有寿险,车险,保障、财产险,意外险,养老险,旅游险。
保险行业DMP用户画像的业务场景都是围绕保险产品进行的,简单的应用场景可以是:A依据自身数据(个人属性)+外部养车App活跃情况,为保险公司找到车险客户。B依据自身数据(个人属性)+移动设备位置信息,为保险企业找到商旅人群,推销意外险和保障险。C依据自身数据(家人数据)+人生阶段信息,为用户推荐理财保险,寿险,保障保险,养老险,教育险。D依据自身数据+外部数据,为高端人士提供财产险和寿险。
证券行业用户画像 2015年4月13日,一码通实施之后,证券行业面临了互联网证券平台的强力竞争。依据某机构发布的金融App排行榜,移动互联网证券App,排名前5位的证券类App,只有一家传统券商。排名第一的互联网券商是排名第一传统券商的6倍,前三名的互联网券商总体覆盖用户接近6000万用户。
用户总数还在不断增加。传统证券行业现在面临的主要挑战是用户交易账户的争夺,证券行业如何增加新用户,如何留住用户,如何提高证券行业用户的活跃,如何提高单个客户的收入,是证券行业主要的业务需求。
证券行业拥有的数据类型有个人属性信息例如用户名称,手机号码,家庭地址,邮件地址等。证券公司还拥有交易用户的资产和交易记录,同时还拥有用户收益数据。利用这些数据和外部数据,证券公司可以建立业务场景,筛选目标客户,为用户提供适合的产品,同时提高单个客户收入。证券公司可以利用用户画像数据来进行产品设计。用户画像和用户分析可以帮助证券公司创造商业价值。