以轻量化为目标的汽车车身结构优化方法综述
2017-07-08赵贤珠
赵贤珠
摘 要:越来越多的汽车保有量引起排放和油耗问题。车身作为整车的重要组成部分,其轻量化有助于提高燃油经济性,减少排放。文章介绍了拓扑优化、尺寸优化和形状优化三种优化方式在汽车车身轻量化设计中的应用,并对车身轻量化的优化设计进行了展望。
关键词:轻量化;拓扑优化;尺寸优化;结构优化
中图分类号:U462.3 文献标志码:A 文章编号:2095-2945(2017)19-0087-02
引言
随着社会的快速发展,汽车保有量越来越多。汽车在带来方便快捷的同时,其油耗排放等问题也越来越引起大家的重视。汽车车身质量约占汽车总重的40%,空载情况下油耗约占整车油耗的70%[1]。其轻量化的目标在于尽可能降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗和排放,并且提高操稳性以及碰撞安全性。本文通过总结车身轻量化优化方法,介绍不同的优化步骤,并对车身轻量化优化设计进行展望。
1 汽车车身轻量化研究背景
汽车自1886年诞生至今有一百多年的历史,汽车车身的研究起步相对较晚,但是其作为汽车的重要组成部分,在整车结构中占据重要地位。研究表明,汽车车身质量每减轻1%,相应油耗降低0.7%[2]。
轻量化研究,是在满足安全性、耐撞性、抗震性以及舒适性的前提下,尽可能降低车身质量,以实现减重、降耗、环保、安全的综合目标[3]。轻量化的实现不仅满足了汽车的基本性能要求,且缓解了能源危机和环境污染的压力,也没有提高汽车设计制造成本,故汽车车身轻量化的研究引起了越来越多的关注。
2 轻量化结构优化方法
目前,以汽车车身轻量化为目标的优化设计方法主要包括拓扑优化、尺寸优化和结构优化。优化设计通常由目标函数、设计变量、约束条件三个因素组成。拓扑优化是在整体优化之前,设计空间确定后对材料布置格局进行优化,但是拓扑优化是从宏观出发,在某些细节方面可能并没有达到最优,因此在拓扑优化之后需要进行尺寸和形状优化。
2.1 拓扑优化
拓扑优化是在给定的空间范围内,通过不停地迭代,重新规划材料的分布和连接方式;是在工程师经验的基础上,明确目标区域和目标函数,确定变量以及约束条件,使车身结构最终既满足性能要求又减轻了质量[4]。拓扑优化通常将有限元分析和数学算法结合起来。
2.1.1 拓扑优化的数学模型
拓扑优化通常以车身质量为目标函数,结构参数和材料厚度为变量,模态和刚度为约束条件。其数学模型为:
minf(X)=f(x1,x2…xn);
s.t.g(X)>0;
ai 其中,x1,x2…xn为设计变量。 2.1.2 拓扑优化的基本步驟和实例 在进行拓扑优化之前首先需要确定设计区域,设计变量和约束条件。然后通常进行有限元模态分析和灵敏度分析,使灵敏度小的部分不参与优化。在此基础上利用软件进行计算,因为在每次的计算中都有参数的改变,所以需要经过较多次的迭代,最终使其分布最优。在软件进行拓扑优化的过程中,用户对于每一次的迭代均可以实时监控。 目前拓扑优化中用到的数学优化算法包括优化准则法、移动渐近线法、数学规划法、遗传算法、进化算法等。使用较多的是优化准则法和移动渐近线法,优化准则法适于求解少约束问题,后者偏重于多约束问题[5][6]。 周定陆等[7]建立参数化模型,不仅将下车体质量减少了23kg,而且模态和刚度在原有的性能上略有上升。王登峰等[8]基于拓扑优化使大客车车身骨架质量减少约11%,且刚度强度等性能满足设计要求。 2.2 尺寸优化 尺寸优化是在结构参数、材料分布确定的前提下,对各桁架结构寻找梁最合适的横截面积、几何尺寸,使得车身质量最小且满足刚度等要求的优化方法。相对来说,尺寸优化建立数学模型较容易,计算简单,在实际工程中可以较快取得最优 解[9]。也可以说,尺寸优化是拓扑优化的进一步完善和发展。 2.2.1 尺寸优化的数学模型 尺寸优化以车身质量最小为目标,几何尺寸为设计变量,刚度以及各变量尺寸限制作为约束条件。 2.2.2 尺寸优化的基本步骤和实例 利用有限元分析划分单元,再进行灵敏度分析,排除不参与优化的单元。为了减少计算量,通常采用近似模型,然后对近似模型进行求解。刘开勇[10]利用超拉丁实验设计方法,采集车身的刚度和模态数据,在此基础上建立一阶响应面模型。潘锋[11]通过建立组合近似模型,减少优化过程的计算量,提高效率。 常用的近似模型有响应面模型、人工神经网络、径向基函数模型、kriging和支持向量回归模型等[10][12]。通过对一阶近似模型进行分析,计算不同的权系数并进行加权叠加构成的组合模型在满足模态和刚度要求的前提下,又兼顾了汽车碰撞安全性、NVH和疲劳等性能影响,且精度更高,因此组合近似模型在多目标多学科优化方面更胜一筹。 张伟[13]等采用遗传算法,结合拓扑优化和车身尺寸优化,不仅将质量降低35%,而且使刚度提高了80%以上。康元春等[14]采用DOE及极差分析和方差分析,确定车身骨架梁截面最优尺寸方案,使车身骨架质量减轻了123.5kg。 2.3 形状优化 形状优化是优化结构的几何形状,通常包括桁架结构梁节点位置的优化;结构内部孔的形状、尺寸的优化以及连续体边界尺寸的优化[15]。早期,与尺寸优化相比,形状优化模型建立比较困难,建立的模型质量通常比较差,影响后期模型的优化求解,尺寸优化的发展受到了限制。后来,网格变形技术的发展简化了形状优化模型的建立[16]。形状优化的过程与尺寸优化相似,通常也需要建立近似模型。
3 结束语
(1)拓扑优化计算量大,应用受到一定限制。尺寸、形状优化在多数软件中都有专门的模块,应用较多。为了解决计算困难问题,优化算法有待突破,算法的突破也是车身结构优化进一步发展的重要前提。
(2)有限元分析方法在车身结构优化中起重要作用,建模、分析软件在车身结构优化方面应用越来越多。
(3)本文所提优化方法没有充分考虑安全性、操稳性、NVH等因素,多学科多目标优化方法是目前车身结构优化的热点。
参考文献:
[1]黄磊.以轻量化为目标的汽车车身优化设计[D].武汉理工大学,2013.
[2]迟汉之.世界汽车轻量化及轻质材料应用趋势[J].轻型汽车技术,2001(4):54-56.
[3]韩宁,乔广明.汽车车身材料的轻量化[J].林业机械与木工设备,2010,38(1):50-52.
[4]崔建磊,曹学涛.拓扑优化技术在汽车设计中的应用[J].山东工业技术,2016(6):254.
[5]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.
[6]葛文杰,黄杰,杨方.拓扑优化技术及其在汽车设计中的应用[J].机床与液压,2007,35(8):11-14.
[7]周定陆,高岩,蔡华国.基于车身结构拓扑优化的车身轻量化研究[C]//2010中国汽车工程学会年会论文集,2010.
[8]王登峰,毛爱华,牛妍妍,等.基于拓扑优化的纯电动大客车车身骨架轻量化多目标优化设计[J].中国公路学报,2017,30(2).
[9]王赢利.新能源汽车白车身结构拓扑及尺寸优化设计[D].大连理工大学,2012.
[10]刘开勇.基于响应面模型的白车身轻量化优化方法[D].湖南大学,2016.
[11]潘锋.组合近似模型方法研究及其在轿车车身轻量化设计的应用[D].上海交通大学,2011.
[12]韩鼎,郑建荣.工程优化设计中的近似模型技术[J].华东理工大学学报:自然科学版,2012,38(6):762-768.
[13]张伟,侯文彬,胡平.基于拓扑优化的电动汽车白车身优化设计[J].湖南大学学报(自科版),2014(10):42-48.
[14]康元春,李園,高永正.基于DOE方法的客车车身骨架尺寸优化[J].重庆交通大学学报(自然科学版),2014,33(4):160-163.
[15]周成军,沈嵘枫,周新年,等.电动汽车车身结构轻量化研究进展[J].林业机械与木工设备,2012(11):14-18.
[16]方剑光,高云凯,王婧人,等.基于网格变形技术的白车身多目标形状优化[J].机械工程学报,2012,48(24):119-126.