雨强和坡度对红壤坡耕地地表径流及壤中流的影响
2017-06-27陈晓安汤崇军郑太辉李龙飞
陈晓安,杨 洁,汤崇军,郑太辉,李龙飞
雨强和坡度对红壤坡耕地地表径流及壤中流的影响
陈晓安1,2,杨 洁1※,汤崇军1,郑太辉1,李龙飞1
(1. 江西省水土保持科学研究院江西省土壤侵蚀与防治重点实验室,南昌 330029; 2. 河海大学水利水电学院,南京210098)
地表径流和壤中流是坡面重要水文过程,雨强和坡度是影响坡面地表径流和壤中流产流主要因素。为研究降雨强度和地表坡度对坡耕地地表径流和壤中流的影响,该文采用人工模拟降雨试验法,在长3.0 m、宽1.5 m、深0.5 m土槽,设计4个不同坡度(5°、10°、15°、20°)和3个不同雨强(30、60、90 mm/h)对红壤坡耕地地表径流及壤中流产流过程进行模拟试验。结果表明:1)壤中流开始产流时间滞后于地表径流,降雨强度从30到90 mm/h,地表径流、壤中流产流开始时间均随雨强增大而减小,壤中流比地表产流开始滞后时间随着雨强增大先增大后趋于稳定;2)地表径流强度随雨强增大而增大,壤中流初始径流强度随雨强增大而增大,不同雨强下壤中流径流峰值相近;3)地表径流和壤中流产流过程曲线有明显差异,地表径流产流过程线先增大后趋于稳定,壤中流产流过程线呈抛物线型即先增大后减小;4)从5°到20°,地表产流开始时间随坡度增大而减小,壤中流产流开始时间随坡度增大先减小后增大;5)从5°到20°,地表径流强度先增大后减小,10°为转折坡度,壤中流产流峰值随坡度增大而减小,并且随着坡度增大达到壤中流峰值时间不断减小。
土壤;侵蚀;产流;红壤坡耕地;雨强;坡度;地表径流;壤中流
0 引 言
红壤坡耕地是中国重要的土地资源,该地区水热资源丰富,是中国重要的名、优、特农产品生产基地[1-2]。然而由于自然因素、历史和人为因素的原因,导致红壤坡耕地水土流失严重,是该区域水土流失策源地[3],红壤坡耕地受到翻耕、作物生长和土体结构的影响,地表径流和壤中流具有特殊性,坡耕地地表径流和壤中流流失不仅会影响坡面土壤水分及养分的流失[4-9],而且坡面地表径流和壤中流是流域径流的重要组成部分,并直接影响到流域水文过程[10-12]。国内外已经对坡面地表径流壤中流特征及其相互关系进行了一系列研究,土壤厚度是影响壤中流发育的重要因素[13],土体构型影响壤中流占总径流的比例[14-15],地表覆盖对壤中流有显著的影响[16],壤中流受到土壤前期含水量、地形、降雨的影响[17-19]。壤中流的产流过程对降雨响应迅速[20],降雨是影响壤中流的来源,三峡花岗岩天然次生马尾松林优先流的流量主要受到降雨总量的影响[21],雨强的增大可以增加紫色土坡耕地壤中流的发生概率及峰值流量[22]。付智勇等[23]通过对紫色土区原位人工模拟降雨试验研究指出降雨强度和表土结皮程度是影响土壤水分过程和壤中流过程的主要因素。谢颂华等[24]采用野外大型土壤入渗装置开展了自然降雨条件下降雨-产流过程的观测试验,结果表明雨型、降雨量、前期土壤含水量影响壤中流产流量及其过程,并指出红壤坡地地下径流占总径流的80%以上[25]。徐勤学等[26]利用野外模拟降雨试验研究认为壤中流的发育受到土地利用类型的影响,荒坡地壤中流径流强度远大于坡耕地,并且坡耕地壤中流径流系数随降雨强度的增加而显著减少。综上,壤中流受降雨的影响是复杂的,且不同土壤类型、土地利用类型情况下壤中流并不是一致的规律。坡耕地受到耕作的影响,其壤中流发育尤为特殊,辽宁浑河流域耕地中地表径流占总径流较大,约为78%,壤中流约占总径流量的22%,而草地中地表径流占总径流仅为48%[27]。郑海金等[28]利用室内模拟试验研究了红壤坡地壤中流、地表径流产流特征,指出壤中流产流量占总径流量52.26%~67.19%,是红壤坡耕地重要的径流形式。地表径流和壤中流的比例随雨强和坡度的不同而发生变化[29]。红壤坡耕地土层厚、质地粘,不同于其他地区坡耕地,并且主要分布在丘陵岗地,坡度变化范围大,红壤区降雨强度差异明显,因此红壤坡耕地雨强和坡度对壤中流的影响研究具有重要意义。
目前关于红壤坡耕地土壤中流的研究较少且主要采用野外固定坡面及室内固定坡度试验,从坡度、雨强角度系统研究红壤坡耕地地表径流和壤中流特征较少涉及。为此,本文采用人工模拟降雨试验,研究了不同雨强和坡度对地表径流及壤中流的影响,以期为深入了解红壤坡耕地地表及壤中流产流过程提供科学依据。
2 材料与方法
2.1 试验地概况
试验区于2015年5-8月在江西水土保持生态科技园内进行。该科技园地处江西省北部的德安县燕沟小流域、鄱阳湖水系博阳河西岸,位于115°42′38″~115°43′06″E、29°16′37″~29°17′40″N,总面积约80 hm2,属亚热带季风气候区,降雨充沛,多年平均降雨量1 350.9 mm,多年平均气温16.7 ℃;地貌为浅丘岗地,海拔30~100 m,坡度5°~25°;成土母质以第四纪红色黏土为主,地带性植被为亚热带常绿阔叶林。
模拟降雨试验在江西水土保持生态科技园二期模拟降雨大厅内完成,模拟降雨大厅采用钢结构,建筑面积约1 776 m2,有效降雨面积786 m2,降雨高度18 m,降雨均匀度在0.85以上,分为4个15.6 m×12.6 m独立降雨区,3个下喷区(1号区、2号区、3号区)和1个侧喷区(4号区),下喷区雨强变化范围为10~200 mm/h,侧喷区雨强变化范围为30~300 mm/h,每个降雨区可以独立控制。本次试验在1号下喷区完成,采用FULLJET旋转下喷式喷头。
2.2 试验方法
试验土槽规格宽(1.5 m)×长(3 m)×高(0.5 m),土槽坡度可以调节,调节范围是0~45°,土槽底部填筑10 cm厚度的粗砂,粗砂上覆盖一层土工布,再填筑40 cm后的第四纪红粘土,20~40 cm土壤填筑容重控制在1.32 g/cm3,0~20 cm土壤种植前翻耕,翻耕后容重为1.15 g/cm3,模拟的是坡耕地土壤,并且在种植花生前与野外花生地一样翻耕0~20 cm深度土壤。农作物采用的是红壤丘陵区坡耕地最主要的农作物花生,按照当地正常种植方式播种花生,株行距为30 cm×30 cm。
降雨强度试验采用的雨强分别为30、60、90 mm/h,坡度为10°,每个雨强试验重复2次,重复间误差小;不同坡度试验分别采用5°、10°、15°、20°4个坡度,降雨强度为90 mm/h,每个坡度试验2个重复,重复间误差小。30 mm/h雨强试验降雨历时120 min,其他所有模拟降雨试验降雨历时均为60 min,试验开始后观测地表产流和壤中流产流开始时间,产流后每隔3 min采集一次整个3 min内地表径流泥沙和壤中流过程样品,雨停至产流截止采集最后一个径流泥沙样品,地表径流、壤中流用量筒直接量测,泥沙样采用搅拌法采集0.5 L浑水样品放入1 L的铝盒中,静置24 h后倒出上部清水,剩下水样烘干测定含沙量。
3 结果与分析
3.1 雨强对地表径流和壤中流影响
对不同雨强下地表径流和壤中流开始产流时间分析见表1,可知不同雨强下地表径流和壤中流开始产流时间均差异明显,不同雨强开始产流时间从大到小依次为30>60>90 mm/h,随着降雨强度的增大,地表径流和壤中流开始产流时间减小;雨强从30到60 mm/h,地表开始产流时间减小29.47 min,雨强从60到90 mm/h,地表开始产流时间减小1.40 min,随着降雨强度的增大,地表开始产流时间减小程度缩小;雨强从30到60 mm/h,壤中流开始产流时间减小16.72 min,雨强从60到90 mm/h,壤中流开始产流时间减小1.46 min,说明随着降雨强度增大,壤中流开始产流时间减小程度降低;不同雨强下壤中流开始产流时间均小于地表径流,当雨强为30 mm/h,壤中流开始产流时间比地表产流滞后仅0.45 min,当雨强达到60 mm/h时,壤中流出流时间比地表产流滞后13.20 min,当雨强继续增大,壤中流比地表产流滞后时间不再继续增大,说明当雨强较小时,壤中流开始产流时间与地表开始产流时间差异不大,随着雨强增大壤中流比地表径流滞后时间增大,当雨强增大到60 mm/h时,壤中流比地表产流滞后时间趋于稳定值。
表1 不同雨强下地表径流和壤中流开始产流时间
对不同雨强下地表产流过程分析见图1,可知不同雨强下地表径流强度先增大后趋于稳定;当降雨强度为30 mm/h时,初始径流强度为3.73 mm/h,产流60 min后径流强度稳定在4.40 mm/h左右,初始径流强度到稳定产流时间长,而且稳定产流值仅高于初始径流强度0.67 mm/h;当降雨强度为60 mm/h,整个产流过程增加较快,初始径流强度为8.89 mm/h,产流36 min后径流强度趋于稳定,稳定径流强度为16 mm/h左右;当雨强增大到90 mm/h产流3 min后就趋于稳定;降雨强度影响到径流强度,不同降雨强度下径流强度从大到小依次为90>60>30 mm/h;累计径流量与累计降雨量曲线斜率从雨强30到90 mm/h不断增大,说明随着雨强增大,相同降雨量带来的径流量增大。
不同雨强下壤中流产流过程分析见图2,可知不同雨强下壤中流径流强度开始产流时小,随着降雨历时增加径流强度增大,产流过程曲线均存在明显的峰,60和90 mm/h降雨壤中流出现峰值值后开始减小,30 mm/h降雨壤中流达到峰值后稳定一段时间减小,李金中等[10,26,29]利用土槽人工模拟降雨试验研究亦认为坡面壤中流过程线均存在明显的峰。雨停5 min后壤中流开始衰减,60和90 mm/h壤中流峰值后的衰减曲线接近,在90 min后衰减曲线几乎重合。不同雨强下壤中流径流强度峰值无差异,均为20 mm/h左右,但是不同雨强下壤中流从开始产流到达峰值时间有明显差异,从30到60 mm/h产流到达峰值所需时间明显缩小,从60到90 mm/h从产流到峰值所需时间缩小不明显。降雨初期,雨水用于湿润土壤和填充土层大孔隙,致使地表产流滞后于降雨[30],地表径流产生的同时,部分雨水沿土体下渗,部分土体一旦蓄满,该土层即产生壤中流[24],30 mm/h雨强较小,开始降雨时土壤入渗水量大于降雨量,致使壤中流产流慢。由于雨强小补充土壤中的水分小,到达峰值所需时间就长,随着雨强的增大,地表径流深度大,补给土壤水分增大,因此,随着雨强的增大,壤中流达到峰值的时间缩减,60和90 mm/h雨强远大于土壤最大入渗率,因此60和90 mm/h雨强壤中流达到峰值时间差异不明显。60和90 mm/h雨强下,壤中流均在1 h整个土槽土体达到完全饱和,壤中流径流强度达到最大,降雨停止后没有水分入渗补给即开始降低,该尖峰的出现和降雨时间短有关,30 mm/h的降雨壤中流达到最大后仍然降雨补充水分,因此其壤中流峰稳定至雨停后减小。坡面翻耕后可以明显增大壤中流的径流系数[22],地表20 cm翻耕作用后,容重减小,孔隙度增大,增加土壤水分入渗率,20 cm以下由于犁底层的存在土壤容重增大到1.32 g/cm3,相对不透水层的存在会促进20 cm深土层壤中流发育。坡耕地特殊的土体结构影响壤中流的产生,造成红壤坡耕地壤中流峰值高,30、60 mm/h壤中流的径流峰值超过其地表径流稳定最大值。由于3个不同雨强下试验土槽填筑土壤、厚度、容重一致,土壤饱和稳定入渗性相同,壤中流的峰均为整个土槽土体水分饱和时的产流,土体饱和稳定入渗率一致,所以不同雨强壤中流最大峰值相同。上述分析说明降雨强度影响壤中流的发育,降雨时间、土壤容重、土体厚度影响壤中流过程线,降雨时间影响到壤中流产流能否产生、出现后能否达到峰值及达到峰值后的稳定时间,土壤容重、土体厚度影响到饱和土体的稳定入渗率,影响到壤中流峰值出现的时间、峰值径流大小。
3.2 坡度对地表径流和壤中流影响
对不同坡度下地表土壤径流和壤中流产流时间分析见表2,可知随着坡度的增大地表产流时间从大到小依次为5°>10°>15°>20°;壤中流产流时间从大到小依次为5°>20°>15°>10°,即从5°到20°随着坡度增大壤中流产流时间先减小后增大,存在临界坡度;壤中流比地表径流滞后时间从大到小依次为5°>20°>15°>10°,即从5°到20°随着坡度增大壤中流比地表径流产流滞后时间先减小后增大,与壤中流产流时间随坡度的变化规律一致。
表2 不同坡度下地表径流和壤中流产流开始时间
对不同坡度下地表产流过程分析见图3,可知不同坡度下红壤坡耕地地表产流过程都是先增大后趋于稳定,随着坡度的增大地表径流稳定时间减小趋势;从5°到10°地表径流稳定值增大,从10°到25°地表径流稳定值依次减小,10°地表径流稳定值最大,即坡度从5°到20°,地表产流稳定值是先增大后减小,存在临界坡度。地表总径流量从5°到20°,分别为198.2、226.5、205.5、198.7 L,说明地表总产流量从5°到20°,先增大后减小,10°最大。从5°到20°土槽的受雨面积不断减小,以90 mm/h雨强试验为例,10°、15°、20°与5°相比土槽每分钟接受到的降雨量依次减小76.86、204.31、381.39 mL,整个1 h的模拟降雨10°、15°、20°与5°相比土槽接受到的降雨量依次减小4 611.71、12 258.89、22 883.34 mL;另外一方面土壤的入渗速率随着坡度的增大而减小,土壤入渗速率的减小又可以增大地表产流量。由于红壤坡耕地土槽模拟试验随着坡度增大受雨面积减小,土壤入渗速率减小,双重因素的影响下导致地表产流量从5°到20°出现先增大后减小的趋势。
雨强90 mm/h及不同坡度下壤中流产流过程由图4可知,不同坡度下壤中流过程曲线表现出明显的单峰,壤中流产流后随着时间增大而增大,峰值在雨停(60 min)后2~7 min内达到,峰值过后随着时间增大,壤中流径流强度减小;从5°到20°,壤中流达到峰值时间分别为66.61、65.67、65.08、62.08 min,即随着坡度的增大,达到峰值时间不断减小;壤中流峰值径流强度从5°到20°分别为33.77、19.56、14.67、14.17 mm/h,即随着坡度的增大峰值不断减小;在壤中流达到峰值前,从5°到20°随着坡度的增大壤中流径流强度增加速度减缓,峰值后从5°到20°表现出随坡度增大衰减速度存在减小的趋势,即坡度越小壤中流增加速度越快,峰值过后减小的速度亦快。
随着坡度增大受雨面积不断减小,土壤水平入渗面不断减小,因此,随着坡度增大壤中流峰值不断减小。
4 结 论
1)降雨影响红壤坡耕地地表径流和壤中流产流。地表径流和壤中流产流开始时间随着降雨强度的增大而减小,壤中流开始产流时间滞后于地表径流,当雨强从30到60 mm/h,壤中流比地表径流产流滞后时间迅速增大,随着雨强继续增大,壤中流比地表径流产流滞后时间趋于稳定;当雨强从30到90 mm/h,随着雨强的增大,地表径流初始径流强度和稳定径流强度都增大,并且累计径流量与累计降雨量曲线斜率不断增大;壤中流径流强度随开始产流时间先增大后减小,随着降雨强度的增大壤中流初始径流强度增大,而壤中流峰值无明显差异,壤中流由开始产流到峰值径流强度增加速度随着雨强增大而增大,60 mm/h降雨与90 mm/h降雨雨停后壤中流衰减曲线一致。降雨时间影响壤中流过程线,降雨时间足够长壤中流径流强度才能达到最大稳定值。
2)坡度影响红壤坡耕地地表径流和壤中流产流。从5°到20°地表开始产流时间随坡度增大而减小,随着坡度增大壤中流开始产流时间先减小后增大,最小值为10°,壤中流比地表径流滞后时间随着坡度增大先减小后增大;从5°到20°随着坡度增大地表径流稳定值、总径流量都先增大后减小,峰值为10°坡面;不同坡度下壤中流产流过程线均表现为先增大后减小,随着坡度增大,壤中流达到峰值时间不断减小,径流峰值不断减小。
[1] 曹学章,张更生. 红壤丘陵脆弱生态环境的形成与整治对策[J]. 农业生态环境,1995,11(4):45-48.
Cao Xuezhang, Zhang Gengsheng. Formation and control countermeasures for vulnerable eco-environment in hilly red soil area[J]. Rural Eco-Environment, 1995, 11(4): 45-48. (in Chinese with English abstract)
[2] 袁东海,王兆骞,陈欣,等. 不同农作措施红壤坡耕地水土流失特征的研究[J]. 水土保持学报,2001,4(18):66-69.
Yuan Donghai, Wang Zhaoqian, Chen Xin, et al. Properties of soil and water loss from slope field in red soil in different farming systems[J]. Journal of Soil and Water Conservation, 2001, 4(18): 66-69. (in Chinese with English abstract)
[3] 水利部,中国科学院,中国工程院. 中国水土流失防治与生态安全[M]. 北京:科学出版社,2010.
[4] 常龙飞,王晓龙,李恒鹏,等. 巢湖典型低山丘陵区不同土地利用类型壤中流养分流失特征[J]. 生态与农村环境学报,2012,28(5):511-517.
Chang Longfei, Wang Xiaolong, Li Hengpeng, et al. Characteristics of soil nutrient loss with interflow from uplands as affected by land uses in low hill region of chaohu basin[J]. Journal of Ecology and Rural Environment, 2012, 28(5): 511-517. (in Chinese with English abstract)
[5] 刘泉,李占斌,李鹏,等. 汉江水源区自然降雨过程下坡地壤中流对硝态氮流失的影响[J]. 水土保持学报,2012,26(5):1-10.
Liu Quan, Li Zhanbin, Li Peng, et al. Effect of nitrate-N loss by subsurface flow of slope land under natural rainfall processes in Hanjiang River water source area[J]. Journal of Soil and Water Conservation, 2012, 26(5): 1-10. (in Chinese with English abstract)
[6] 马琳琳,安娟,刘前进. 横坡垄作壤中流条件下垄高对径流态氮磷流失的影响[J]. 水土保持学报,2014,28(6):56-60.
Ma Linlin, An Juan, Liu Qianjin. Effects of ridge height on losses of nitrogen and phosphorus in runoff under seepage condition for contour ridge system[J]. Journal of Soil and Water Conservation, 2014, 28(6): 56-60. (in Chinese with English abstract)
[7] 李恒鹏,金洋,李燕. 模拟降雨条件下农田地表径流与壤中流氮素流失比较[J]. 水土保持学报,2008,22(2):6-9.
Li Hengpeng, Jin Yang, Li Yan. Comparative study of nitrogen losses between surface flow and interflow of farmland under artificial rainfall conditions[J]. Journal of Soil and Water Conservation, 2008, 22(2): 6-9. (in Chinese with English abstract)
[8] Marianne Bechmann. Long-term monitoring of nitrogen in surface and subsurface runofffrom small agricultural dominated catchments in Norway[J]. Agriculture, Ecosystems and Environment, 2014, 198: 13-24
[9] 莫明浩,谢颂华,张杰,等. 红壤坡地氮溶质分层输出特征试验研究[J].水利学报,2006,47(7):924-933
Mo Minghao, Xie Songhua, Zhang Jie, et al. Experimental research on characteristics of nitrogen output from different layers in red soil slopes[J]. Journal of Hydraulic Engineering, 2006, 47(7): 924-933. (in Chinese with English abstract)
[10] 李金中,裴铁璠,牛丽华,等. 森林流域坡地壤中流模型与模拟研究[J]. 林业科学,1999,35(4):2-8,9.
Li Jinzhong, Pei Tiefan, Niu Lihua, et al. Simulation and model of interflow on hillslope of forest catchment[J]. Scientia Silvae Sinicae, 1999, 35(4): 2-8, 9. (in Chinese with English abstract)
[11] 裴铁璠,李金中. 壤中流模型研究的现状及存在问题[J].应用生态学报,1998,9(5):543-548.
Pei Tiefan, Li Jinzhong. Current situation and existing problems in research of interflow models[J]. Chinese Journal of Applied Ecology, 1998, 9(5): 543-548. (in Chinese with English abstract)
[12] Pertti Alaaho, Chris Soulsby, Wang Hailong, et al. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterization[J]. Journal of Hydrology, 2017(547): 664-677.
[13] Fu Zhiyong, Li Zhaoxia, Cai Chongfa, et al. Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective[J]. Geoderma, 2011(167/168): 41-53.
[14] Fu Zhiyong, Chen Hongsong, Xu Qinxue, et al. Role of epikarst in near-surface hydrological processes in a soil mantledsubtropical dolomite karst slope: Implications of field rainfall simulation experiments[J]. Hydrological Processes, 2016, 30(5): 795-811.
[15] 张兴,王克林,付智勇,等. 桂西北白云岩坡地典型石灰土土体构型水文特征[J]. 应用生态学报,2017,28(7)网络版http://kns.cnki.net/kcms/detail/21.1253.Q.20170518.1317.022.html
Zhang Xing, Wang Kelin, Fu Zhiyong, et al. Hydrological characteristics of contrasting calcareous soil architecture on dolomite slope of Northwest Guangxi[J]. Chinese Journal of Applied Ecology, 2017, 28(7) http://kns.cnki.net/kcms/detail/ 21.1253.Q.20170518.1317.022.html. (in Chinese with English abstract)
[16] Liu Yaojun, Yang Jie, Hu Jianmin, et al. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China[J]. Journal of Hydrology, 2016, 539: 457-467.
[17] Fu Zhi Yong, Chen Hong Song, Wang Zhanga, et al. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14.
[18] Wilson G V, Cullum R F, Romkens M J M. Ephemeral gully erosion by preferential flow through a discontinuous soil-pipe[J]. Catena, 2008, 73(1): 98-106.
[19] 肖雄,李小雁,吴华武,等. 青海湖流域高寒草甸壤中流水分来源研究[J]. 水土保持学报,2016,30(2):230-236.
Xiao Xiong, Li Xiaoyan, Wu Huawu, et al. Study on the water sources of subsurface flow in alpine meadow of the Qinghai Lake Basin[J]. Journal of Soil and Water Conservation, 2016, 30(2): 230-236. (in Chinese with English abstract)
[20] Guebert M D, Gardner T W. Macropore flow on a reclaimed surface mine: Infiltration and hillslope hydrology[J]. Geomorphology, 2001, 39: 151-169
[21] 何凡,张洪江,史玉虎,等. 长江三峡花岗岩地区降雨因子对优先流的影响[J]. 农业工程学报,2005,21(3):75-78.
He Fan, Zhang Hongjiang, Shi Yuhu, et al. Influence of rainfall factors on preferential flow in the granite region of the Three Gorges of the Yangtze River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(3): 75-78. (in Chinese with English abstract)
[22] 徐佩,王玉宽,傅斌,等. 紫色土坡耕地壤中流特征及分析[J]. 水土保持通报,2006,26(6):14-18.
Xu Pei, Wang Yukuan, Fu Bin, et al. Interflow occurrence characters and their analysis on slope cropland with purple soil[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 14-18. (in Chinese with English abstract)
[23] 付智勇,李朝霞,蔡崇法,等. 不同起始条件下坡面薄层紫色土水分和壤中流响应[J]. 水利学报,2011,42(8):899-907.
Fu Zhiyong, Li Zhaoxia, Cai Chongfa, et al. Impact of boundary conditions on soil water and subsurface flow in shallow purple soil slope[J]. Journal of Hydraulic Engineering, 2011, 42(8): 899-907. (in Chinese with English abstract)
[24] 谢颂华,涂安国,莫明浩,等. 自然降雨事件下红壤坡地壤中流产流过程特征分析[J]. 水科学进展,2015,26(4):226-234.
Xie Songhua, Tu Anguo, Mo Minghao, et al. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 2015, 26(4): 226-234. (in Chinese with English abstract)
[25] 谢颂华,莫明浩,涂安国,等. 自然降雨条件下红壤坡面径流垂向分层输出特征[J]. 农业工程学报,2014,30(19):132-138.
Xie Songhua, Mo Minghao, Tu Anguo, et al. Characteristics of vertical runoff output on red-soil slope under natural rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(19): 132-138. (in Chinese with English abstract)
[26] 徐勤学,王天巍,李朝霞,等. 紫色土坡地壤中流特征[J].水科学进展,2010,21(2):229-234.
Xu Qinxue, Wang Tianwei, Li Zhaoxia, et al. Characteristics of interflow in purple soil of hillslope[J]. Advances in Water Science, 2010, 21(2): 229-234. (in Chinese with English abstract)
[27] 周林飞,郝利朋,孙中华. 辽宁浑河流域不同土地类型地表径流和壤中流氮、磷流失特征[J]. 生态环境学报,2011,20(4):737-742.
Zhou Linfei, Hao Lipeng, Sun Zhonghua. Characteristics of nitrogen and phosphorus losses through surface flow and interflow on different types of land in Liaoning Hunhe Basin[J]. Ecology and Environment, 2011, 20(4): 737-742. (in Chinese with English abstract)
[28] 郑海金,胡建民,黄鹏飞,等. 红壤坡耕地地表径流与壤中流氮磷流失比较[J]. 水土保持学报,2014,28(6):41-45.
Zheng Haijin, Hu Jianmin, Huang Pengfei, et al. Comparative study of nitrogen and phosphorus through surface-flow and interflow on Red Soil farmland[J]. Journal of Soil and Water Conservation, 2014, 28(6): 41-45. (in Chinese with English abstract)
[29] 丁文峰,张平仓,王一峰. 紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究[J]. 长江科学院院报,2008,25(3):14-17.
Ding Wenfeng, Zhang Pingcang, Wang Yifeng. Experimental study on runoff and sediment yield characteristics on purple soil slope[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(3): 14-17. (in Chinese with English abstract)
[30] De Vente J, Poesen J, Verstraeten G. The application of semi-quantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain[J]. Journal of Hydrology, 2005, 305(1-4): 63-86.
Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland
Chen Xiaoan1,2, Yang Jie1※, Tang Chongjun1, Zheng Taihui1, Li Longfei1
(1.,330029;2.,210098,)
The surface and subsurface runoff in the red soil slope farmland result in soil moisture and nutrient loss. In addition, the surface and subsurface runoff are important components contributing runoff at the watershed scale. An extensive literature shows that rain intensity and slope are two main factors playing an important role in the surface and subsurface runoff. In this paper, the surface and subsurface runoff in the red soil slope land under different rainfall intensities and slopes were studied by stimulated rainfall experiments in the flume (3.0 m length×1.0 m width×0.5 m depth) with variable slopes. The experiments were conducted in the Jiangxi Soil and Water Conservation Ecological Science and Technology Park. Stratified soil samples from different profiles including 0-20 cm (the plow horizon) and 20-40 cm (the plow pan) were collected and then filled respectively into the flumes by controlling the bulk density. For the rain intensity of 90 mm/h, we set four slopes including 5°, 10°, 15° and 20° in the simulated rainfall experiment. Three rain intensity levels (30, 60 and 90 mm/h) were set for the plots with slope of 10°. The results indicated that: 1) the subsurface runoff lagged behind the surface runoff, and the initiation time of the surface and subsurface runoff decreased with the increase of rainfall intensity from 30 mm/h to 90 mm/h. The lag time of the subsurface runoff initiation increased with the increasing rain intensity, and then tended to be stable; 2) the initial and steady surface runoff increased with the increase of the rain intensity; and the initiation subsurface runoff intensity increased with the increase of rainfall intensity. An increase trend was observed in the runoff produced by per unit rainfall; 3) the initial intensity of the surface runoff increased with the increase of rainfall intensity from 30 to 90 mm/h. However, no significant differences were found for the peak values of the subsurface runoff under different rainfall intensities. The attenuation curves of the surface runoff under different rainfall intensities were similar; 4) the obvious differences were observed between the runoff process curves of the surface runoff and subsurface runoff. The surface runoff increased firstly and then tended to be stable, but the soil subsurface runoff increased firstly and then decreased; 5) the initiation time of the surface runoff decreased with the increase of slope from 5° to 20°, but the initiation time of the subsurface runoff decreased firstly and then increased with the increase of the slope. The lag time of the subsurface runoff to the surface runoff also decreased firstly and then increased with the increasing slopes; 6) the surface runoff intensity first increased and then decreased with the increasing slope from 5° to 20° with a critical slope of 10°. The peak values of the subsurface runoff in soils increased firstly and then decreased with the increasing slopes. Moreover, the time to reach the peak value of the subsurface runoff decreased gradually with the increase of the slopes.
soils; erosion; runoff; red soil slope farmland; rainfall intensity; slope; surface runoff; subsurface runoff
10.11975/j.issn.1002-6819.2017.09.018
S157.1
A
1002-6819(2017)-09-0141-06
2016-10-18
2017-04-10
国家自然科学基金(41401312);水利部公益性行业专项(201301050);水利部948项目(201519);江西省优势科技创新团队建设项目(20152BCB24011);江西省水利科技项目(KT201419)
陈晓安,男,安徽南陵人,工程师,博士生,主要研究土壤侵蚀机理等。南昌 江西省水土保持科学研究院江西省土壤侵蚀与防治重点实验室,330029。Email:onlycxa@163.com
杨 洁,女,教授。主要研究水土保持。南昌 江西省水土保持科学研究院江西省土壤侵蚀与防治重点实验室,330029。 Email:zljyj@126.com
陈晓安,杨 洁,汤崇军,郑太辉,李龙飞. 雨强和坡度对红壤坡耕地地表径流及壤中流的影响[J]. 农业工程学报,2017,33(9):141-146. doi:10.11975/j.issn.1002-6819.2017.09.018 http://www.tcsae.org
Chen Xiaoan, Yang Jie, Tang Chongjun, Zheng Taihui, Li Longfei. Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 141-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.018 http://www.tcsae.org