APP下载

秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量

2017-06-27胡万里翟丽梅刘宏斌陈安强盖霞普张亦涛王洪媛

农业工程学报 2017年9期
关键词:氮素油菜化肥

张 丹,付 斌,胡万里,翟丽梅,刘宏斌,陈安强,盖霞普,张亦涛,刘 剑,王洪媛



秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量

张 丹1,付 斌2,胡万里2,翟丽梅1,刘宏斌1,陈安强2,盖霞普1,张亦涛1,刘 剑3,王洪媛1※

(1. 中国农业科学院农业资源与农业区划研究所,农业部面源污染控制重点实验室,北京 100081; 2. 云南省农业科学院农业环境资源研究所,昆明 650205; 3. 宾夕法尼亚州立大学植物营养系,宾夕法尼亚 16802)

为探讨西南山区水稻-油菜轮作模式下秸秆还田对作物产量和土壤氮素固持能力的影响,于2013-2015年在洱海流域稻油轮作农田中设置空白处理(CK)、单施化肥(CF)、化肥+玉米秸秆(CFMS)以及化肥+蚕豆秸秆(CFBS)4个处理,测定分析了作物产量、土壤微生物量及土壤理化性质等关键指标。结果表明,与CF处理相比,秸秆还田提高水稻、油菜产量及其地上部含氮量,增加氮素有效输出。不同处理土壤微生物量碳、氮质量分数存在差异,其大小顺序为:CFMS>CFBS>CF>CK。与土壤碳氮比相比,土壤微生物熵和微生物量C/N对秸秆还田做出快速响应,秸秆还田提高土壤微生物熵,降低微生物量C/N。此外,秸秆还田显著降低油菜收获后的土壤硝态氮残留(<0.05),与CF相比,玉米秸秆和蚕豆秸秆还田分别使土壤硝态氮残留量减少11.6%~55.0%和13.7%~52.3%。可见,中国西南山区稻油轮作模式下秸秆还田能提高作物产量和含氮量,增强土壤微生物氮素固持能力,有效降低土壤氮素流失风险,且玉米秸秆在增产、固氮方面的作用优于蚕豆秸秆。结果可为提高西南山区水稻、油菜产量,增强土壤氮素固持能力,降低土壤氮素流失风险提供参考。

秸秆;有机碳;土壤;秸秆还田;水稻-油菜轮作;作物产量;土壤微生物量;硝态氮残留

0 引 言

氮肥为全球作物产量提高做出了重要贡献[1-2]。然而,过度追求高产导致的氮肥过量施用,导致中国当季氮肥利用率较低[3],大量盈余氮素通过挥发、径流以及淋溶等方式进入大气或水体[4-5],造成大气污染、地表水富营养化和地下水硝酸盐超标等环境问题[6]。“第一次全国污染源普查”数据结果表明,农业源总氮占总氮排放量的57%[7],其中,化肥过量施用是农业面源污染的主要因素之一[8]。因此,提高氮肥利用率,减少土壤氮素流失成为中国乃至全球研究热点问题。

大量研究表明,秸秆还田技术能有效提高氮素利用率,减少氮肥施用量和氮素损失量,可部分解决农田土壤中过量氮肥施用引发的污染问题[9-10]。王静等[11]研究表明,秸秆覆盖使巢湖地区农田土壤径流量减少30.5%,径流氮损失量降低27.4%。张刚等[12]通过原状土柱模拟试验表明,与单施化肥相比,秸秆还田配施化肥处理氮肥淋溶损失率降低30.9%。此外,秸秆还田是实现秸秆资源化利用的重要途径之一,既减轻焚烧对环境的污染,又能改善土壤肥力,提高作物产量[13-14]。

不同碳氮比(C/N)秸秆还田对土壤氮素固持转化的影响不同。低C/N秸秆中含有较高的氮组分,在土壤中容易分解,且能释放较多的矿质态氮,有利于提高土壤微生物生物量[15-16]。高C/N秸秆易发生氮素净固持,有利于减少土壤氮素流失风险[17-19],但高C/N秸秆还田前期,易发生土壤微生物与作物争氮现象[20],导致作物生长前期土壤氮素供应不足,秸秆还田与化肥结合可有效解决此问题。

玉米、水稻以及豆类等是云南省主要的种植作物,其种植面积分别占作物总播种面积的21.2%、15.9%以及7.8%[21],每年农作物秸秆产生量超过2000万t。其中,稻草主要用于奶牛养殖垫圈,而大部分玉米秸秆和豆类秸秆或就地焚烧,或随意堆放在田间地头,既影响农村环境,又浪费资源。目前,针对该地区稻油轮作模式下,习惯化肥氮投入基础上的秸秆还田对作物产量和土壤氮素固持能力影响的研究较少。本研究选择玉米秸秆和蚕豆秸秆作为研究对象,探究在常规化肥氮施用下,不同类型秸秆还田对作物产量和土壤氮素固持能力的影响及作用机制,从而达到增加作物产量,提高化肥氮素利用率,减少氮素流失,最终实现作物秸秆合理有效利用。

1 材料与方法

1.1 研究区概况

试验点位于云南省大理州洱源县上寺村(99°57′E,25°58′N,海拔2 099 m),该地区气候类型为北亚热带高原季风气候,四季温差小,降雨充沛,年均气温13.9 ℃,降雨量为745 mm,主要集中在每年5-10月份。种植模式为典型的水稻-油菜轮作,土壤类型为水稻土,试验前采集0~20 cm耕层土壤测定土壤基础理化性质:土壤pH值为5.7,土壤有机质(soil organic matter,SOM)质量分数51.1 g/kg,全氮(total nitrogen, TN)质量分数2.7 g/kg,全磷(total phosphorus, TP)质量分数0.9 mg/kg,速效钾质量分数8.3 mg/kg,硝态氮(NO3--N)质量分数37.4 mg/kg,铵态氮(NH4+-N)质量分数0.7 mg/kg,土壤微生物量碳(soil microbial biomass carbon, SMBC)和微生物量氮(soil microbial biomass nitrogen, SMBN)质量分数分别为443.1和32.7 mg/kg。

1.2 试验设计

试验时间为2013年11月-2015年10月,试验共设4个处理:不施肥(no fertilization, CK),单施化肥(chemical fertilizer, CF),化肥+玉米秸秆(chemical fertilizer combined with maize straw, CFMS)以及化肥+蚕豆秸秆(chemical fertilizer combined with broad bean straw,CFBS),按照随机区组试验设计,每个处理设置3个重复(区组),共12个处理样方,每个样方面积为30 m2(5 m×6 m)。参照当地肥料用量进行施肥,除了CK处理外,其他处理的氮、磷、钾化肥用量一致,油菜季氮、磷(P2O5)、钾(K2O)化肥用量分别为180、74和120 kg/hm2,其中氮肥按照基肥∶现蕾期追肥∶开花期追肥=3∶3∶4分施,磷钾肥按基肥:开花期追肥=7∶3分施;水稻季氮、磷(P2O5)、钾(K2O)化肥用量分别为75、52.5和60 kg/hm2,其中氮肥和钾肥按照基肥∶穗肥=7∶3分施,磷肥全部作基肥施用。化肥品种分别为尿素(N 46%)、过磷酸钙(P2O516%)和硫酸钾(K2O 50%),CFMS和CFBS处理中玉米秸秆、蚕豆秸秆用量相等且全部作基肥施用,油菜季用量为6 900 kg/hm2,水稻季用量为3 450 kg/hm2,还田方式为粉碎翻压还田,玉米秸秆和蚕豆秸秆C/N分别为66和45,其余组分含量见表1。油菜种植和收获时间分别为11月和次年5月,水稻种植和收获时间分别为5月和10月。

表1 秸秆各组分含量

1.3 样品采集与测试方法

分别于2015年(鉴于大田试验布置的第1 年数据不稳定,因此2014年没有进行土壤取样分析)5月油菜和10月水稻收获后,多点取样法采集各样方0~20 cm耕层土壤混合样,带回实验室,过2 mm筛,部分鲜土4 ℃冰箱保存,用于测定SMBC、SMBN、NH4+-N以及NO3--N,另一部分土样进行风干,用于测定土壤pH、SOM和TN。

SMBC和SMBN采用氯仿熏蒸0.5 mol/L K2SO4浸提法测定[22]。首先将土样在25 ℃恒温培养箱中培养7 d,然后称取预处理土样6份(每份12 g)放入烧杯中,将其中3份置于内置50 mL NaOH和50 mL去乙醇氯仿小烧杯的真空干燥器中,抽真空后保持氯仿沸腾5 min,然后将干燥器移置在黑暗条件下25 ℃培养24 h,再次抽真空完全去除土壤中的氯仿。另外3份做未熏蒸对照试验,将熏蒸和未熏蒸的土样转移到100 mL提取瓶中,加入40 mL 0.5 mol/L K2SO4浸提液(水∶土质量比为4∶1)震荡30 min,然后过滤得上清液。上清液中的总有机碳、氮用总有机碳分析仪(Vario TOC,Elementar Analysensysteme GmbH,德国)测定,熏蒸与未熏蒸土壤提取液中有机碳、氮测定值之差和分别除以相对应的转换系数K(0.45)和K(0.68),即分别得到土壤微生物量碳和微生物量氮。土壤NO3--N和NH4+-N含量采用0.01 mol/L CaCl2浸提,流动分析仪(AA3,Seal Analytical GmbH,德国)测定,SOM采用重铬酸钾外加热氧化法测定,TN采用H2SO4-加速剂消煮凯氏定氮法测定(KDY-9830,北京市通润源机电技术有限责任公司,中国),土壤含水量和pH值采用《土壤和农业化学分析法》测定[23]。

2014年和2015年油菜和水稻收获后自然风干,对籽粒和秸秆分别称质量,计算产量和地上部生物量。作物籽粒和秸秆中TN以及玉米秸秆和蚕豆秸秆中SOM、TN、TP、K2O、灰分测定方法见《土壤和农业化学分析法》[23],纤维素、半纤维素和木质素测定方法与王金主等[24]测定方法相同。相关计算公式如下:

籽粒总含氮量(kg/hm2)=籽粒产量(kg/hm2)×

籽粒全氮质量分数(g/kg)÷1000; (1)

秸秆总含氮量(kg/hm2)=秸秆产量(kg/hm2)×

秸秆全氮质量分数(g/kg)÷1000; (2)

地上部总含氮量(kg/hm2)=籽粒含氮量(kg/hm2)+

秸秆含氮量(kg/hm2)。 (3)

1.4 数据分析

采用OriginLab 8.5软件作图,采用SPSS 19.0进行单因素方差分析(One-way ANOVA),统计分析处理间作物产量、土壤理化性质以及土壤微生物量碳、氮质量分数之间的差异,分析前,对所有数据进行方差齐性检验,方差不齐时进行对数转化。多重比较采用Duncan法(=0.05),平均值在<0.05水平下的任何差异具有统计学意义。

2 结果与分析

2.1 作物产量和含氮量

由表2可知,与单施化肥(CF)相比,秸秆还田处理的油菜产量和生物量分别增加28.6%~62.1%和54.7%~83.8%,呈显著性差异(<0.05),其中,玉米秸秆(CFMS)还田后油菜产量和生物量显著高于蚕豆秸秆(CFBS)(<0.05),其增产幅度分别为16.7%~17.5%和4.5%~18.8%。对于水稻而言,CFMS处理产量最高,为11.0~12.2 t/hm2,分别比CFBS和CF处理增加24.5%~27.9%和32.6%~35.8%,其次是CFBS处理,产量为8.6~9.8 t/hm2,比CF处理增加6.2%~6.5%。与CF相比,秸秆还田处理水稻生物量显著增加(<0.05),增加幅度为20.0%~23.5%,其中,CFMS处理水稻生物量最大。CF处理水稻产量和生物量分别比CK提高39.7%~41.5%和38.2%~39.7%,达到显著水平(<0.05)。连续2 a测定结果均表明秸秆还田能够提高作物产量和生物量。

不同处理的油菜和水稻地上部含氮量与产量变化趋势基本一致,各处理地上部含氮量大小顺序均为CFMS>CFBS>CF>CK。与CF相比,CFMS和CFBS处理的油菜地上部含氮量分别增加14.5%~20.2%和5.2%~9.0%,水稻地上部含氮量分别增加68.3%~87.4%和35.7%~55.0%。其中,CFMS处理的油菜和水稻地上部含氮量显著高于CFBS处理(<0.05),增加幅度分别为5.0%~14.3%和20.9%~24.0%。由此可以看出,在增加作物产量和地上部含氮量方面,应用玉米秸秆的效果高于蚕豆秸秆。

表2 秸秆还田油菜、水稻产量和地上部分含氮量的影响

注:CK、CF、CFMS和CFBS分别代表不施肥、单施化肥、化肥+玉米秸秆和化肥+蚕豆秸秆。表中数值为平均值±标准差,同列数据后不同字母表示处理间差异达到显著性水平(<0.05)。下同。

Note: CK, CF, CFMS and CFBS represent no fertilization treatment, chemical fertilizer treatment, chemical fertilizer combined with maize straw treatment and chemical fertilizer combined with broad bean straw treatment. Data in the table are means±SD. Different lowercase letters within same column indicate significant differences between treatments (<0.05). The same as below.

2.2 土壤微生物量碳氮

图1结果显示,与CF相比,秸秆还田能够提高SMBC质量分数。油菜季CFMS和CFBS处理SMBC质量分数分别比CF增加21.3%和14.6%,水稻季CFMS和CFBS处理分别比CF增加20.4%和11.3%。

各处理SMBN质量分数变化趋势与SMBC一致,与CF相比,秸秆还田能够显著提高SMBN质量分数(<0.05)。油菜季CFMS和CFBS处理SMBN质量分数分别比CF处理增加29.8%和27.3%,水稻季CFMS和CFBS处理SMBN质量分数分别比CF处理增加17.7%和10.0%。其中,CFMS处理的SMBN质量分数高于CFBS处理,与CFBS处理相比,油菜季和水稻季的SMBN质量分数分别增加2.2%和7.0%,后者差异显著(<0.05)。同时,单施化肥能够显著提高SMBN质量分数(<0.05),其SMBN质量分数是CK处理的1.3~1.5倍。

由图2a可知,秸秆还田能够提高土壤微生物熵(SMBC/SOC)。油菜季CFMS处理SMBC/SOC最高,比CF处理增加18.5%,呈显著性差异(<0.05)。其次是CFBS,SMBC/SOC为1.45,显著高于CK处理(<0.05)。水稻季CFMS和CFBS处理SMBC/SOC分别是2.8和2.4,两者均显著高于CF处理(<0.05)。土壤微生物量化学计量碳氮比(SMB C/N)结果显示(图2b),与CK处理相比,其他3个处理SMB C/N均显著降低(<0.05),油菜季CF、CFMS和CFBS的SMB C/N降低幅度为27.3%~34.3%,水稻季降低幅度为14.7%~17.8%。

2.3 土壤理化性质

各处理对土壤理化性状的影响如表3所示,与CF处理相比,秸秆还田对土壤pH值、TN、SOM质量分数以及土壤碳氮比均无显著性影响(>0.05)。秸秆还田能够增加旱季土壤持水能力,油菜季CFMS和CFBS处理的土壤含水量范围为17.6%~18.9%,显著高于CK和CF处理(<0.05)。

作物收获后,土壤无机氮主要以NO3--N形态存在(图3),油菜季各处理土壤NO3--N质量分数为20.3~45.4 mg/kg,远高于各处理土壤NH4+-N质量分数;水稻季土壤NO3--N质量分数为11.5~14.6 mg/kg,是相应处理土壤NH4+-N质量分数的2.0~2.5倍。与CF相比,秸秆还田能显著降低油菜和水稻收获后土壤NO3--N残留量(<0.05)。油菜收获后CFMS和CFBS处理土壤中残留的NO3--N质量分数与CK相近,分别为20.4和21.7 mg/kg,比CF处理降低55.0%和52.3%。水稻收获后CFMS和CFBS处理土壤NO3--N质量分数分别比CF处理降低11.6%和13.7%。

表3 秸秆还田对土壤理化性质的影响

3 讨论与建议

3.1 秸秆还田对土壤理化性质和作物产量的影响

连续2 a的田间试验结果发现,秸秆还田对土壤有机质和全氮质量分数影响较小,表明水稻-油菜轮作模式下土壤有机质和全氮质量分数较为稳定,短时间内对土壤管理措施变化反应不敏感,这与Zhao等[25]的研究结果一致。胡乃娟等[26]研究结果也表明,小麦-水稻轮作体系中连续2 a秸秆全量还田,土壤总有机碳和活性有机碳质量分数无显著性变化(>0.05),而长期秸秆还田能显著提高土壤有机质质量分数,增强土壤肥力[27-28]。因此,秸秆还田作为改善土壤肥力的措施需长期坚持。

秸秆还田能够显著提高中国西南地区油菜、水稻产量和生物量(<0.05),这与以往的研究报道相一致。中国南方稻麦轮作模式下,2 a秸秆还田试验对两季作物的产量都有明显提高[29]。Zhao等[30]9 a的田间试验表明,秸秆还田后作物产量提高7%,尤其对缺水缺肥区农田作物的增产效果更佳。秸秆还田促进作物增产,一方面是由于秸秆的投入改善了土壤结构,有利于土壤保水保肥[31];另一方面,外源有机物料的投入能够补充有机碳,促进微生物的活性,从而提高养分的有效性[32]。但由于不同秸秆类型在养分含量方面存在差异,导致其在改善土壤性质、促进作物生长发育方面存在差异[33-35]。本研究中,添加玉米秸秆对作物产量和地上部含氮量的提升优于蚕豆秸秆,其原因可能为玉米秸秆中有机质质量分数高且含有较丰富的糖等易利用有机碳(例如,玉米秸秆中水溶性糖质量分数为1.35%~9.62%[36],蚕豆秸秆为1.01%[37]),对土壤微生物的促进作用大于蚕豆秸秆,从而增加了土壤微生物对氮素的固持转化,使易流失的无机氮转化为相对稳定的有机氮,有利于氮素的长效利用[18-19]。

3.2 秸秆还田对土壤氮素固持的影响

土壤氮素残留量过高,不仅会造成氮素资源的浪费,还会对环境造成一定程度的威胁[38]。巨晓棠等[38]通过同位素示踪技术研究表明,随着施氮量增加,土壤中氮素残留量增加,氮素损失量也相应增加。西南地区降雨主要集中在5-10月(水稻季),占全年降雨量的85%左右,该阶段是农田氮素流失的关键期[39]。单施化肥处理油菜收获后土壤硝态氮质量分数为45.4 mg/kg(或102.2 kg/hm2,按照0~20 cm土层土壤重量2 250 t/hm2计算),远高于欧美等国家限值(0~90 cm土体中残留硝态氮低于45 kg/hm2或无机氮不高于50 kg/hm2)[40]。秸秆还田能大幅度减少油菜收获后土壤中硝态氮残留量(图3),与单施化肥相比,秸秆还田土壤硝态氮降低54.8%~55.6%,从而能够显著降低水稻季土壤残留氮的流失风险。秸秆还田降低土壤氮素流失风险的原因主要有以下3方面:1)秸秆中氮素主要以有机态形态存在,该部分氮素较稳定,短期内通过矿化作用转化为无机氮的量较少[41];2)秸秆还田提高了作物产量和作物含氮量,增加氮素的作物携出量;3)秸秆还田可通过提高土壤微生物活性,调节矿质氮的固持转化[42-43],将易流失的无机氮转化为相对稳定的有机氮,从而降低氮肥田间损失[44-45]。

微生物量氮是土壤有机质中封存氮素的主要存在形式,被认为是土壤活性氮的储存库,以及作物生长可利用态养分的重要来源[46],其含量变化能够表征土壤微生物对氮素的固持能力[47]。本研究中秸秆还田能够显著提高土壤微生物量氮含量,与单施化肥相比,秸秆还田处理土壤微生物量氮增幅为10.0%~29.8%,表明秸秆还田能够提高土壤氮素固持能力。赵世诚等[48]在华北地区的研究结果表明化肥与秸秆配施土壤微生物量氮质量分数比单施化肥增加88.5%。也有研究表明,秸秆还田处理中土壤微生物量氮质量分数比单施化肥提高114.3%[49]。秸秆还田提高土壤微生物量氮强度不同主要受土壤特性、耕作方式、秸秆还田种类、还田量、研究区域气候特征等因素的影响[35,50-51]。

与单施化肥相比,秸秆还田短期内对土壤有机质质量分数影响不大,表明利用秸秆还田提高土壤碳库储量是一个长期的过程[19,52],而土壤微生物量碳含量和微生物熵的快速反应特性可以将其作为土壤总有机质变化的早期指标[53]。近年来,微生物量C/N在土壤生态系统中的调控作用受到越来越多的关注[54-55]。Li等[56]认为微生物量C/N是稻田土壤生产力的有效指标,稻田土壤微生物量C/N越低,土壤生产能力越强,这与我们的研究结果相一致。本研究中,秸秆还田和单施化肥都导致了微生物量C/N降低,表明在资源供给过程中,土壤微生物往往会为了吸收更多的养分而调节其生态化学计量碳氮比[2]。

3.3 建 议

本研究仅仅是从量(作物含氮量、微生物量、土壤氮素残留量)的角度对秸秆还田降低土壤氮素流失风险的影响机制进行了分析和探讨,而未涉及对氮素循环速率的影响。Buchkowski等[55]认为,土壤碳氮循环过程中土壤微生物生态化学计量C/N对循环速率的调控作用要大于微生物量本身,而只有当外源有机物料的碳氮比接近于原有微生物量碳氮比时微生物量才会发挥较大的调控作用。因此,还需要对相关理论做进一步的研究。

4 结 论

1)中国西南山区稻油轮作模式下,短期(2 a)秸秆还田对土壤有机质、全氮等土壤肥力指标的影响不显著,但与单施化肥处理相比,土壤全氮和有机质略有增加。

2)秸秆还田能够增加作物产量,提高作物地上部含氮量。与单施化肥相比,秸秆处理油菜和水稻产量分别增加28.6%~62.1%和6.2%~35.8%,作物地上部含氮量分别增加5.2%~20.2%和35.7%~87.4%。同时,秸秆还田能显著提高土壤微生物的氮素固持能力,减少土壤硝态氮残留。秸秆还田处理土壤微生物量氮质量分数比单施化肥处理增加10.0%~29.8%,油菜收获后土壤硝态氮残留减少52.3%~55.0%,从而降低水稻季氮素流失风险。

3)中国西南山区稻油轮作模式下,与蚕豆秸秆处理相比,玉米秸秆处理作物产量、地上部含氮量以及土壤微生物量氮含量分别增加16.7%~27.9%、5.0%~24.0%和2.2%~7.0%。因此,玉米秸秆还田在增产、固氮方面的作用优于蚕豆秸秆。

[1] Malhi S S, Lemke R, Wang Z H, et al. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions[J]. Soil & Tillage Research, 2006, 90(1/2): 171-183.

[2] 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区[J]. 土壤学报,2014,51(5):921-933.

Ju Xiaotang. The concept and meanings of nitrogen fertilizer availability ratio-discussing misunderstanding of traditional nitrogen use efficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese with English abstract)

[3] Castellano M J, David M B. Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): E766-E766.

[4] Sieling K, Kage H. Efficient N management using winter oilseed rape: A review[J]. Agronomy For Sustainable Development, 2010, 30(2): 271-279.

[5] Ollivier J, Toewe S, Bannert A, et al. Nitrogen turnover in soil and global change[J]. FEMS Microbiology Ecology, 2011, 78(1): 3-16.

[6] Yuan L, Zhang Z C, Cao X C, et al. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation[J]. Field Crop Research, 2014, 155: 164-171.

[7] 第一次全国污染源普查资料编纂委员会. 污染源普查数据集[M]. 北京:中国环境科学出版社,2011.

[8] 巨晓棠,谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报,2014,20(4):783-795.

Ju Xiaotang, Gu Baojing. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese with English abstract)

[9] Watanabe T, Man L H, Vien D M, et al. Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong Delta[J]. Soil Science and Plant Nutrition, 2009, 55(6): 754-763.

[10] 陈金,唐玉海,尹燕枰,等. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响[J]. 作物学报,2015,41(1):160-167.

Chen Jin, Tang Yuhai, Yin Yanping, et al. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat[J]. Acta Agronomica Sinica. 2015, 41(1): 160-167. (in Chinese with English abstract)

[11] 王静,郭熙盛,王允青. 秸秆覆盖与平衡施肥对巢湖流域农田氮素流失的影响研究[J]. 土壤通报,2011,42(2):331-335.

Wang Jing, Guo Xisheng, Wang Yunqing. Effects of straw mulch and balanced fertilization on nitrogen loss from farmland in Chaohu Lake region[J]. Chinese Journal of Soil Science, 2011, 42(2): 331-335. (in Chinese with English abstract)

[12] 张刚,王德建,俞元春,等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报,2016,22(4):877-885.

Zhang Gang, Wang Dejian, Yu Yuanchun, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877-885. (in Chinese with English abstract)

[13] 王如芳,张吉旺,董树亭,等. 我国玉米主产区秸秆资源利用现状及其效果[J]. 应用生态学报,2011,22(6):1504-1510.

Wang Rufang, Zhang Jiwang, Dong Shuting, et al. Present situation of maize straw resource utilization and its effect in main maize production regions of China[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1504-1510. (in Chinese with English abstract)

[14] Powlson D S, Riche A B, Coleman K, et al. Carbon sequestration in European soils through straw incorporation: Limitations and alternatives[J]. Waste Management, 2008, 28(4): 741-746.

[15] Thormann M N, Currah R S, Bayley S E. Succession of microfungal assemblages in decomposing peatland plants[J]. Plant and Soil, 2003, 250(2): 323-333.

[16] Eskelinen A, Stark S, Mannisto M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats[J]. Oecologia, 2009, 161(1): 113-123.

[17] Ros G H, Hoffland E, Temminghoff E J M. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues[J]. Soil Biology & Biochemistry, 2010, 42(12): 2094-2101.

[18] Howlader M A R, Solaiman A R M, Chowdhury M A H. Biodynamics of microbial biomass nitrogen and sulfur in soil amended with organic matter and fertilizer(1): Soil Biomass[J]. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 2010, 33: 37-47.

[19] Machado D, Sarmiento L, Gonzalez-Prieto S. The use of organic substrates with contrasting C/N ratio in the regulation of nitrogen use efficiency and losses in a potato agroecosystem[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3): 411-427.

[20] Yadvinder S, Bijay S, Ladha J K, et al. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation[J]. Soil Science Society of America Journal, 2004, 68(3): 854-864.

[21] 国家统计局农村社会经济调查司. 中国农村统计年鉴-2014[M]. 北京:中国统计出版社,2014.

[22] Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass[J]. Soil Biology & Biochemistry, 2004, 36(1): 5-7.

[23] 鲁如坤. 土壤和农业化学分析法[M]. 北京:中国农业科技出版社,2000.

[24] 王金主,王元秀,李峰,等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵,2010(3):44-47.

[25] Zhao Shicheng, Li Kejiang, Zhou Wei, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture Ecosystems & Environment, 2016, 216: 82-88.

[26] 胡乃娟,韩新忠,杨敏芳,等. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应[J]. 植物营养与肥料学报,2015,21(2):371-377.

Hu Naijuan, Han Xinzhong, Yang Minfang, et al. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice -wheat rotation farmland[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 371-377. (in Chinese with English abstract)

[27] 刘禹池,曾祥忠,冯文强,等. 稻-油轮作下长期秸秆还田与施肥对作物产量和土壤理化性状的影响[J]. 植物营养与肥料学报,2014,20(6):1450-1459.

Liu Yuchi, Zeng Xiangzhong, Feng Wenqiang, et al. Effects of long-term straw mulch and fertilization on crop yields and soil physical and chemical properties under rice-rapeseed rotation[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1450-1459. (in Chinese with English abstract)

[28] 王玄德,石孝均,宋光煜. 长期稻草还田对紫色水稻土肥力和生产力的影响[J]. 植物营养与肥料学报,2005,11(3):302-307.

Wang Xuande, Shi Xiaojun, Song Guangyu. Effects of long-term rice straw returning on the fertility and productivity of purplish soil[J]. Journal of Plant Nutrition and Fertilizer, 2005, 11(3): 302-307. (in Chinese with English abstract)

[29] Zhu L Q, Hu N J, Zhang Z W, et al. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system[J]. Catena, 2015, 135: 283-289.

[30] Zhao H, Sun B F, Lu F, et al. Straw incorporation strategy on cereal crop yield in China[J]. Crop Science, 2015, 55(4): 1773-1781.

[31] Yin W, Yu A Z, Chai Q, et al. Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%[J]. Agronomy for Sustainable Development, 2015, 35(2): 815-825.

[32] 陈晓芬,李忠佩,刘明,等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J]. 中国农业科学,2013,46(5):950-960.

Chen Xiaofen, Li Zhongpei, Liu Ming, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China[J]. Scientia Agricultura Sinica, 2013, 46(5): 950-960. (in Chinese with English abstract)

[33] Xiao K C, Xu J M, Tang C X, et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments[J]. Soil Biology & Biochemistry, 2013, 67: 70-84.

[34] Xu J M, Tang C, Chen Z L. Chemical composition controls residue decomposition in soils differing in initial pH[J]. Soil Biology & Biochemistry, 2006, 38(3): 544-552.

[35] 刘四义,贾淑霞,张晓平,等. 玉米和大豆秸秆还田对黑土微生物量及呼吸的影响[J]. 土壤与作物,2014(3):105-111.

Liu Siyi, Jia Shuxia, Zhang Xiaoping, et al. Effects of corn and soybean residues return on microbial biomass and respiration in the black soil[J]. Soil and Crop, 2014(3): 105-111. (in Chinese with English abstract)

[36] 闫贵龙,孟庆翔,陈绍江. 玉米类型和籽粒成熟期影响秸秆营养成分与活体外消化率的比较研究[J]. 动物营养学报,2005,17(3):52-57.

Yan Guilong, Meng Qingxiang, Chen Shaojiang. Comparison of nutrient content anddigestibility of corn stalks of different corn variety type and during different maturity stage of kernals[J]. Acta Zoonutrimenta Sinica, 2005, 17(3): 52-57. (in Chinese with English abstract)

[37] 顾拥建,占今舜,沙文锋,等. 不同处理方式对青贮蚕豆秸秆发酵品质和营养成分的影响[J]. 饲料研究,2016(8):1-3.

[38] 巨晓棠,张福锁. 关于氮肥利用率的思考[J]. 生态环境,2003,12(2):192-197.Ju Xiaotang, Zhang Fusuo. Thingking about nitrogen recovery rate[J]. Ecology and Environment, 2003, 12(2): 192-197. (in Chinese with English abstract)

[39] 李文超. 凤羽河流域农业面源污染负荷估算及关键区识别研究[D]. 北京:中国农业科学院,2014.

Li Wenchao, Evaluating the Loads of Agricultural Non-point Source Pollution and Identifying Critical Source Areas in Fengyu Basin[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)

[40] Raun W R, Johnson G V, Westerman R L. Fertilizer nitrogen recovery in long-term continuous winter wheat[J]. Soil Science Society of America Journal, 1999, 63(3): 645-650.

[41] 余坤,冯浩,赵英,等. 氨化秸秆还田加快秸秆分解提高冬小麦产量和水分利用效率[J]. 农业工程学报,2015,31(19):103-111.

Yu Kun, Feng Hao, Zhao Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 103-111. (in Chinese with English abstract)

[42] 郝晓晖,胡荣桂,吴金水,等. 长期施肥对稻田土壤有机氮、微生物生物量及功能多样性的影响[J]. 应用生态学报,2010,21(6):1477-1484.

Hao Xiaohui, Hu Ronggui, Wu Jinshui, et al. Effects of long-term fertilization on the paddy soils organic nitrogen microbial biomass and microbial functional diversity[J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1477-1484. (in Chinese with English abstract)

[43] Gentile R, Vanlauwe B, Chivenge P, et al. Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics[J]. Plant and Soil, 2011, 338 (1/2): 159-169.

[44] Akkal C N, Morvan T, Menasseri A S, et al. Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of (15N)-labeled cauliflower crop residues () into the soil: A 3-year lysimeter study[J]. Plant and Soil, 2010, 328(1/2): 17-26.

[45] Shan J, Yan X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71: 170-175.

[46] Simpson I J, Blake D R, Rowland F S, et al. Implications of the recent fluctuations in the growth rate of tropospheric methane[J]. Geophysical Research Letters, 2002, 29(10): 1-4.

[47] Mooshammer M, Wanek W, Haemmerle I, et al. Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014, 5: 1-7.

[48] 赵士诚,曹彩云,李科江,等. 长期秸秆还田对华北潮土肥力、氮库组分及作物产量的影响[J]. 植物营养与肥料学报,2014,20(6):1441-1449.

Zhao Shicheng, Cao Caiyun, Li Kejiang, et al. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on fluvo-aquic soil in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1441-1449. (in Chinese with English abstract)

[49] 张星,刘杏认,张晴雯,等. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响[J]. 农业环境科学学报,2015,34(10):1943-1950.

Zhang Xing, Liu Xingren, Zhang Qingwen, et al. Effects of biochar and straw direct return on soil microbial biomass during maize growth season in North China Plain[J]. Journal of Agro-Environment Science 2015, 34(10): 1943-1950. (in Chinese with English abstract)

[50] 杨敏芳,朱利群,韩新忠,等. 耕作措施与秸秆还田对稻麦两熟制农田土壤养分、微生物生物量及酶活性的影响[J]. 水土保持学报,2013,27(2):272-275.

Yang Minfang, Zhu Liqun, Han Xinzhong, et al. Effects of tillage and residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation[J]. Journal of Soil and Water Conservation, 2013, 27(2): 272-275. (in Chinese with English abstract)

[51] Wan X H, Huang Z Q, He Z M, et al. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations[J]. Plant and Soil, 2015, 387(1/2): 103-116.

[52] Yao S, Merwin I A, Bird G W, et al. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition[J]. Plant and Soil, 2005, 271(1/2): 377-389.

[53] Strickland Michael S, Rousk Johannes. Considering fungal: Bacterial dominance in soils-Methods, controls, and ecosystem implications[J]. Soil Biology & Biochemistry, 2010, 42(9): 1385-1395.

[54] Hill B H, Elonen C M, Seifert L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers[J]. Ecological Indicators, 2012, 18: 540-551.

[55] Buchkowski R W, Schmitz O J, Bradford M A. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling[J]. Ecology, 2015, 96(4): 1139-1149.

[56] Li Y, Wu J S, Shen J L, et al. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields[J]. Scientific Reports, 2016, 6: 35266.

Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning

Zhang Dan1, Fu Bin2, Hu Wanli2, Zhai Limei1, Liu Hongbin1, Chen Anqiang2, Gai Xiapu1, Zhang Yitao1, Liu Jian3, Wang Hongyuan1※

(1.100081;2.650205;3.16802,)

Recently, crop straws returning to field has been vigorously proposed as an effective strategy to promote agricultural sustainability in China. However, there were few studies revealing the effects of straw return on rice () - rape () rotation systems in Southwest China, especially lacking contrastive research about different crop straws. To explore the effects of straw incorporation on crop yield and soil nitrogen (N) retention of rice-rape rotation system, a field experiment was conducted from 2013 to 2015 in Yunnan Province. Specifically, the experiment consisted of 4 treatments: No fertilizer (CK), chemical fertilizer (CF), chemical fertilizer plus maize straw (CFMS), and chemical fertilizer plus broad bean straw (CFBS). Crop yield, soil N content, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and some other soil physicochemical properties were determined after rice or rape harvest. The results showed that straw incorporation (CFMS and CFBS) considerably increased crop yield and total biomass compared with the CF, and the yield and biomass of rape were increased by 28.6%-62.1% and 5.2%-20.2%, respectively, and those of rice were increased by 6.2%-35.8% and 35.7%-87.4%, respectively. In particular, CFMS produced the highest crop yield (4.2-4.7 t/hm2for rape and 11.0-12.2 t/hm2for rice), and CFMS increased the rape and rice yield by 16.7%-17.5% and 24.5%-27.9%, respectively, compared with CFBS. In consistent with the effects on crop yield, straw incorporation effectively increased the N content of rice and rape, and CFMS and CFBS increased the N content by 14.5%-20.2% and 5.2%-9.0% for rape, respectively, and 68.3%-87.4% and 35.7%-55.0% for rice, respectively, relative to the CF. In addition, CFMS significantly increased the N content (161.0-185.3 kg/hm2for rape and 219.0-243.1 kg/hm2for rice) compared with CFBS (153.3-162.1 kg/hm2for rape and 176.6-201.0 kg/hm2for rice) (<0.05). Furthermore, the SMBC and SMBN under straw incorporation were both increased significantly compared with CK (<0.05), and they were ranked in such order: CFMS>CFBS>CF>CK. There was no significant difference in the soil pH value, total N, soil organic matter (SOM) and soil C/N among these 4 treatments (>0.05) because of the relatively short experimental period (only lasting for 2 years). Generally, the soil microbial entropy and soil microbial biomass C/N (SMB C/N) could quickly respond to straw incorporation compared with the highly stable soil C/N. Nitrate N was the main component of inorganic N in soil, and soil residual N after crop was harvested was significantly decreased under straw incorporation (<0.05), which declined by 11.6%-55.0% for CFMS and 13.7%-52.3% for CFBS compared with the CF (45.4 mg/kg). Rainfall mainly occurred during rice growing season (from May to October) in Southwest China, which had a high potential to cause N losses. However, the significant reduction of residual N in soil by straw incorporation after rape was harvested could probably lead to a lower potential of N loss in rice growing season. We conclude that the incorporation of straw into soil can increase crop yield and crop N uptake, improve soil N immobilization potential and reduce risks of N loss in the rice-rape rotation in Southwest China. Particularly, the incorporation of maize straw demonstrates greater advantages in yield increase and N retention than bean straw in actual production.

straw; organic carbon; soils; straw returning; rice-rape rotation; crop yield; soil microbial biomass; nitrate nitrogen residual

10.11975/j.issn.1002-6819.2017.09.017

S158.3

A

1002-6819(2017)-09-0133-08

2016-10-27

2017-04-09

国家自然科学基金(41301311),国家公益性行业(农业)科研专项(201303095),国家重点研发计划(2016YFD0800500)

张丹,女,山东邹平人,从事农田养分循环与环境研究。北京中国农业科学院农业资源与农业区划研究所,100081。Email:zhangdan0630@126.com

王洪媛,山东莱州人,副研究员,从事农田土壤碳氮循环、农业面源污染防控技术、农业废弃物资源化利用等研究。北京中国农业科学院农业资源与农业区划研究所,100081。Email:wanghongyuan@caas.cn

张 丹,付 斌,胡万里,翟丽梅,刘宏斌,陈安强,盖霞普,张亦涛,刘 剑,王洪媛. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报,2017,33(9):133-140. doi:10.11975/j.issn.1002-6819.2017.09.017 http://www.tcsae.org

Zhang Dan, Fu Bin, Hu Wanli, Zhai Limei, Liu Hongbin, Chen Anqiang, Gai Xiapu, Zhang Yitao, Liu Jian, Wang Hongyuan. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.017 http://www.tcsae.org

猜你喜欢

氮素油菜化肥
7月我国化肥进口量增加
现代农业离不开化肥
油菜田间管理抓『四防』
油菜可以像水稻一样实现机插
化肥农药减量,怎么减?
化肥需求增长不均 有人欢喜有人忧
油菜烩豆腐
桃树氮素营养研究进展(2) ——桃树的氮素贮藏与循环利用
桃树氮素营养研究进展(1)——桃树对氮素的吸收、运转与利用
如何翻译“香菇油菜”?