镍掺杂Ca3Co4O9+δ材料的制备与磁性研究*
2017-06-23崔乃庚范天舒曲秀荣徐岩岩
崔乃庚,范天舒,曲秀荣,徐岩岩
(哈尔滨师范大学)
镍掺杂Ca3Co4O9+δ材料的制备与磁性研究*
崔乃庚,范天舒,曲秀荣,徐岩岩
(哈尔滨师范大学)
采用溶胶-凝胶法制备了热电材料Ca3Co4-xNixO9+δ(x=0,0.17,0.25)粉体.利用XRD和SEM对材料的物相和形貌进行分析,XRD测试结果表明,随着镍掺杂含量增加,衍射峰向小角度偏移,说明了镍元素已经进入了Ca3Co4O9+δ晶格中.通过SEM扫描发现,材料的晶粒呈层状结构且尺寸大小均匀.通过振动样品强磁计(VSM)对样品磁性进行分析,发现镍元素的掺杂对样品的磁性有轻微的影响.
Ca3Co4O9+δ;Ni掺杂;微观结构;磁性曲线
0 引言
热电材料是一种可以利用固体内部载流子的运动,从而实现电能与热能之间互相转换的功能材料.塞贝克效应和帕尔帖效应能够使热能与电能之间发生相互转换的理论基础,而热电性能是热电材料的热能与电能相互转化的衡量标准.热电材料的热能与电能之间转换的效率高低,通常用热电优值 ZT来表征,其定义式为 ZT= S2T/(ρκ),其中S、κ、T、ρ分别是塞贝克系数、热导率、绝对温度和电阻率.想要获得理想的热电材料,应该满足拥有低热导率、高Seebeck系数和高电导率、低热导率的条件.部分金属氧化物,在高温状态下的化学性和热稳定性并不是很稳定,容易分解和氧化,而钴基氧化物热电材料具有抗氧化性、使用寿命长、无毒性、制备简单、环境友好等优点,而且可以使废热直接转化为电能,因此成为科研者关注的焦点[1-5].
层状钴基氧化物Ca3Co4O9+δ具有不匹配层状结构,属于单斜晶系.Ca3Co4O9+δ材料是由CdI2型CoO2层和绝缘岩盐型Ca2CoO3层沿c轴交替堆叠而成的.具有很高的热电性能,且化学性质较稳定,使材料具有较高的电导率[7].现在,热电材料的热电优值仍处于较低水平.而提高热电优值的一种有效的方法就是掺杂金属元素.掺杂金属离子后,Ca3Co4O9+δ材料的迁移率和电导率会有所提高,这样会使掺杂材料的热电性能有所提升.很多研究表明Co位和Ca位掺杂元素,是提高 Ca3Co4O9+δ热电性能很有效的方式之一[8-10].根据Butt等[11]研究可知,其结构内部CoO2层和Ca2CoO3层存在晶格失配,导致晶格周期不对称,使材料表现出多样的磁性质[12],而通过掺杂,能明显改变材料的磁性能.该文对制备出用Ni替换Co位的材料进行分析,并对其磁性进行测试分析.
1 实验
该实验中,采用溶胶凝胶法来制备
Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的粉体.称适量的Ca(NO3)2·4H2O、Co(NO3)2·6H2O和一定量的Ni(NO3)3·9H2O溶液,分别溶于80 mL的去离子水中,将获得的溶液进行搅拌.在温度达到80℃时,搅拌同时并开始滴加1 mol/L柠檬酸溶液,直到pH为2时停止滴加,继续搅拌该溶液直至呈紫色透明胶体.将得到的湿凝胶放入473K烘箱中,干燥12 h后获得干凝胶;之后采用自蔓延燃烧的方法,燃烧2 h,将干凝胶中的有机物除掉,获得前驱体;将获得的前躯体进行研磨4 h,经 1073K 热处理 6 h后获得 Ca3Co4-xNixO9+δ(x=0,0.17,0.25)粉体.将获得的Ca3Co4-xNixO9+δ(x=0,0.17,0.25)粉体分别命名为CC、CCN017和CCN025.
利用D/max–rB型X射线衍射仪(Cu–Kα1,λ=1.5406Å)对样品进行物相分析.然后将样品喷金后在Hitachi S4800型扫描电子显微镜下观察材料的粉体和表面形貌.最后利用Lakeshore7410型振动样品强磁计对样品的测性进行测试.
2 结果与讨论
图1是Ca3Co4-xNixO9+δ(x=0,0.25)掺杂后的XRD图谱.从图中可以看出,所有的衍射峰与Ca3Co4O9+δ相的JCPDS卡片(PDF21-0139)是一致的,没有杂峰的出现,可以证明合成的Ca3Co4O9+δ样品为纯相.
图1.Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的XRD衍射图谱
图2是Ca3Co4-xNixO9+δ(x=0,0.25)的最高峰(004)图谱,从图中观察可知,镍掺杂Ca3Co4O9+δ材料的衍射峰向小角度轻微移动.根据Yao Q,Wang D L等[13]研究可知,镍离子替换CoO2层中的钴位.钴离子以Co3+(0.545Åls,0.61 hs)存在在CoO2层中.而Ni3+的离子半径分别为(0.56Åls,0.60Åhs).根据布拉格公式: 2dsinθ=λ可知,d变大而θ减小,使峰向小角度偏移,说明镍离子已经替代钴离子掺进了Ca3Co4O9+δ晶格之中,从而引起了晶格参数的改变.
图2 Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的最高峰(004)图谱
将样品喷金后,在Hitachi-S4800型扫描电子显微镜下观察,能看出样品的微观结构.图3是Ni掺杂的Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的SEM图像.从图 3(a)可以看出,制备的Ca3Co4-xNixO9+δ(x=0)晶粒呈片状结构,晶粒大小均匀.图3(b)和图3(c)分别是
Ca3Co4-xNixO9+δ(x=0.17,0.25)样品的扫描图,掺杂镍元素后,样品的晶粒尺寸略微减小,但对整体的影响效果不大,晶粒尺寸大小与图3(a)中基本相同,约为1~2μm.
图4是振动样品Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的磁性测试曲线,是在室温下测试获得的.从图中可以看出,所有曲线经过原点,并且与外磁场成正比,随着镍掺杂含量的增加,Ca3Co4-xNixO9+δ(x=0.17)样品的磁性强度增加.然而当掺杂量进一步增加为Ca3Co4-xNixO9+δ(x=0.25)时,磁化强度降低,可能是有杂质项的出现.证明元素掺杂对样品的磁性有轻微的影响.
3 结论
该文研究了镍元素掺杂对Ca3Co4O9+δ粉体的微观结构和磁性的影响.随着镍掺杂含量的增加,XRD图谱各衍射峰的影响向低角度偏移,说明镍元素已经融入Ca3Co4O9+δ粉体并引起了晶胞参数的变化.SEM图中样品晶粒成片状结构,大小分布均匀且无规律的排列,晶粒大小约为1~2μm.Ca3Co4-xNixO9+δ(x=0,0.17,0.25)样品的磁性曲线发生了变化,说明掺杂镍元素可以增强样品的磁化强度.
图3 Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的SEM图谱
图4 (a)Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的VSM图像 (b)Ca3Co4-xNixO9+δ(x=0,0.17,0.25)的VSM放大图像
[1]Butt S,Liu Y C,Lan J L,et al.High-temperature Thermoelectric Properties of La and Fe Co-doped Ca-Co-O Misfit-layered Cobaltites Consolidated by Spark Plasma Sintering.Journal of Alloys and Compounds,2014,588:277-283.
[2]Bell L E.Cooling,Heating,Generating Power,and Recovering Waster Heat with Thermoelectric Systems.Science,2008,321:1457-1461.
[3]Noudem J G,Lemonnier S,Prevel M,et al.Thermoelectric Ceramics for Generators.Journal of the Eurpean Ceramic Society,2008,28:41-48.
[4]Delorme F,Ovono Ovono D,Marudhachalam P,et al.Effect of PrecursorsSize on the Thermoelectric Propertiesof Ca3Co4O9Ceramics.Materials Research Bulletin,2012,47: 1169-1175.
[5]Tritt T M,Subramanian M A.Thermoelectric Materials Phenomena and Application:A Bird’s Eye View.MRS Bulletin,2006,31:188-198.
[6]Terasaki I,Sasago Y,Uchinokura K.Large Thermoelectric Power of NaCo2O4Single Crystals.Phys Rev B,1997,56: R12685-R12687.
[7]Mei T,Zhang J J,Wang L L,et al.Preparation of Mixed Oxides Ca9Co12O28and Their Electrochemical Properties.Materials Letters,2012,82:1-3.
[8]Nan J,Wu J,Deng Y.Synthesis and Thermoelectric Properties of(NaxCa1-x)3Co4O9Ceramics.Journal of the Eurpean Ceramic Society,2003(23):859-863.
[9]Li D,Qin X T,Gu Y J,et al.The Effect of Mn Substitution on the Thermoelectric Properties of Ca3MnxCo4-xO9at Low Temperature.Solid State Communications.2005,134:235-238.
[10]Lin Y H,Lan J,Shen Z J,et al.High-temperature Electrical Transport Behaviors in Textured Ca3Co4O9-based Poly-crystalline Ceramics.Appled Physics Letters,2009,94: 072107.
[11]Butt S,Liu Y C,Lan J L.,et al.High-Temperature Thermoelelctric Properties of La and Fe Co-Doped Ca-Co-O Misfit-Layered Cobaltites Consolidated by Spark Plasma Sintering.Journal of Alloys and Compounds,2014,588:277-283.
[12]Chen W,Hida K,Sanetuary B C.Ground-State Phase Diagram of S=1 XXZ Chains with Uniaxial Single-Ion-Type Anistropy.PhysicalReview B,2003,67,ArticleID: 104401.
[13]Yao Q,Wang D L,Chen L D,et al.Effect of Partial Substitution of Transition Metals for Cobalt on the High-temperature Thermoelectric Properties of Ca3Co4O9+δ.Journal of Applied Physics,2005,97(10):103905/1~103905/5.
Preparation and Study on Magnetic Properties of Ni-doped Ca3Co4O9+δ
Cui Naigeng,Fan Tianshu,Qu Xiurong,Xu Yanyan
(Harbin Normal University)
In this paper,the thermoelectric materials,Ca3Co4-xNixO9+δ(x=0,0.17,0.25),were prepared by the method of sol-gel.The phase and morphology of material are analyzed by using the XRD (X-ray diffraction)and the SEM(scanning electron microscope),the result of XRD shows that,with the doped content of Ni increasing,the diffraction peak is shifted to a small angle,which indicated that the Ni element had been assimilated into the Ca3Co4O9+δ.The grain of material is layered through the SEM scanning,and its size is well-proportioned.And the magnetic of the sample has been analyzed by using VSM,in consequence,the adulteration of Ni element has a slight effect on the magnetic properties of the sample.
Ca3Co4O9+δ;Ni-doped;Microstructure;Magnetic curve
O482
:A
:1000-5617(2017)01-0098-04
(责任编辑:李家云)
2016-11-12
*黑龙江省自然科学基金项目(QC2011C026);黑龙江省教育厅项目(12541229);哈尔滨市科技局项目(2013RFQXJB5)