灰色系统理论在南京市土地资源结构优化中的应用
2017-06-22史政源
史政源
摘 要 通过分析2005年—2014年南京市土地资源利用结构和社会经济状况,结合相关政策以及发展需求的多种约束条件,以经济利益最大化为目的,建立灰色线性规划模型,应用于该市土地资源结构优化中,运用Matlab软件求解,进而对该市2020年的土地资源利用结构提出了一个合理的优化方案。
关键词 灰色系统理论;灰色线性规划;土地结构优化
中图分类号 F3 文献标识码 A 文章编号 2095-6363(2017)08-0007-02
土地资源结构优化是通过一定方法对未来土地利用取得经济、社会、生态效益的最佳分配,通常采用定性和部分定量方法,但这样的方法主观性过强,易造成结果误差大等问题。而采用系统的数学模型进行土地资源结构优化时,则要面对影响因素的不确定性。针对规划模型或约束条件出现不定数的情况,本文采用灰色系统理论中的灰色线性规划等理论,建立动态规划模型,探究分析其应用于南京市土地资源结构优化的可行性。
1 灰色系统理论
灰色系统理论集系统分析、评估、建模、预测、决策、控制、优化技术于一体的一门新兴学科的结构体系。其主要内容包括以灰色代数系统、灰色方程、灰色矩阵等为基础的理论体系;以序列算子和灰色序列生成为基础的方法体系;以灰色关联空间和灰色聚类评估为依托的分析、评价模型体系;以GM(1,1)为核心的预测模型体系;以多目标智能灰靶决策为标志的决策模型体系,以多方法融合创新为特色的灰色组合模型体系以及灰色规划、灰色投入产出、灰色博弈、灰色控制为主体的优化模型体系[1]。
2 实证研究及算法分析
2.1 研究区域概况
南京作为长江三角洲的中心城市之一,经济发展水平领先,但市内各片区域经济发展欠均衡,区域内不同类型经济的发展状况差异较大。南京市土地资源比较丰富,但由于南京市人口的快速增长、城镇化进程的加快和经济的快速发展,土地利用不够合理,利用率较低,制约了南京经济又好又快的发展。
2.2 灰色系统理论的应用
利用灰参数线性规划,以及灰色系统理论中GM(1,1)模型等,可以灵活应对目标效益系数不确定,约束条件变化等不确定因素,以下我们通过和灰色线性规划及灰色系统理论在南京市土地利用结构优化的应用中分析其可行性。
2.2.1 GM(1,1)的应用
GM(1,1)在灰色线性规划中用于预测目标效益系数的灰区间范围,以及各约束条件的系数,从而确定灰数区间,下面以耕地单位面积GDP为例进行应用分析。
首先得到2005年—2014年南京市耕地单位面积GDP(万元/公顷)的序列,其中2005(1.86)、2006(1.99)、2008(2.31)、2009(3.29)、2010(3.75)、2011(4.36)、2012(4.94)、2013(5.53)、2014(5.87)。GM(1,1)的预测结果如图1所示。
2.2.2 变量设置
根据南京市国土资源局的信息公开以及《南京市土地利用总体规划(2006-2020年)》要求,设置如下变量:x1(耕地);x2(园地);x3(林地);x4(牧草地);x5(其他农业地);x6(居民点工矿用地);x7(交通设施用地);x8(水利设施用地);x9(其他土地)[5]。
2.2.3 目标函数
根据南京市土地资源优化利用的目的和意义,以经济效益最大化为目标建立如下目标函数:
2)人口总量约束。2020常住人口1?047万人。
3)宏观计划约束。(1)耕地面积。农用地比例控制在64.3%,农用地中耕地比例稳定在55.8%,耕地保有量分别保持236?034.6公顷以上。(2)农用地:农用地、其他土地比例控制在64.3%、8.5%,其他农用地不少于91?650.3公顷。(3)建设用地面积。2020年,建设用地比例提高至27.2%,控制在179?175.97以内。(4)居民点工矿用地面积,需要大于141?869.5公顷。(5)交通运输与水利设施。建设用地比例提高至27.2%,建设用地中交通水利设施用地比例提高至20.7%。
4)生态环境约束。(1)林地面积。农用地中林地比例提高至20.4%。(2)牧草地面积,要小于20公顷。(3)园地面积大于9?332.4公顷。
3 结果分析
按规定中的预测对上述模型的灰数进行白化,分别取上限、中间值及下限,转化为一般的线性规划求解,由Matlab软件linprog函数求得最优解,求解结果即3个土地利用结构优化方案,见表1。
从表中可知,方案1是在人口较少,耕地较少的情况下,其园地面积大于其他方案,生态环境由于其他方案,但其交通设施用地与水利设施用地相差过大,不利于经济的良好发展。
方案3是在人口增长控制较差,前耕地保有量充足的情况下,其交通设施用地与水利设施用地比例接近,但园地较少,不益于生态经济的发展。
方案2是在“二孩”政策下人口较多,前耕地保有量较为充足的情况下,其最为符合未来实际需求,其交通设施用地与水利设施用地比例最为接近,且园地较多,既考虑了生态环境的保护,又注重经济的健康发展。
综合考虑,选择方案2为最优优化方案。
4 结论与意见
众所周知,土地利用是一个复杂的系统,由于灰色线性规划中灰数的不确定性,得出的结果也只是近似解。本文以经济利益最大化为目的,建立灰色线性规划模型,应用于该市土地资源结构优化中,运用Matlab软件求解,结果显示方案2最符合南京市的土地利用规划和发展,在未来可以进一步的推广。
参考文献
[1]刘思逢,党耀国,方志耕,等.灰色系统理论及其应用[M].5版.北京:科学出版社,2008:251-294.
[2]司守奎,孫兆亮.数学建模算法与应用[M].2版.北京:国防工业出版社,2005:399-402.
[3]刘智超,赵姚阳.基于信息熵的土地利用结构研究——以江苏省南京市为例[J].山西农业科学,2013,49(9):968-972.