APP下载

基于某航空发动机振动事件的高压涡轮转子叶片超温问题研究

2017-06-19张晗王茹雪刘洋孙沐昕

中国新技术新产品 2017年11期
关键词:航空发动机

张晗+王茹雪+刘洋+孙沐昕

摘 要:某航空发动机试验过程中发生振动大故障。分解后,发现高压涡轮转子叶片等多处零组件有磨损、变形甚至断裂的情况。将全台共计72片高压涡轮转子叶片委托中国航空工业集团公司失效分析中心进行分析,确认原因为高压涡轮转子叶片超温。分析高压涡轮转子叶片超温的多种可能原因,采用排除法,推断此次高压涡轮转子叶片超稳为局部超温,原因为高压涡轮导向器堵块脱落打伤高压涡轮转子叶片导致高压涡轮转子叶片冷却失效。根据推断寻找事实依据,推导故障模式。提出解决高压涡轮导向器堵块存在脱落可能性的方案,为后续高压涡轮转子叶片超温问题的判断提供分析思维导向。

关键词:航空发动机;整机振动;高压涡轮转子叶片超温;冷却失效

中图分类号:V231 文献标识码:A

当代航空发动机的高压涡轮部件承接在主燃烧室后,是将高温高压气体内能转化为机械能最重要的部件之一。虽然目前绝大多数的高压涡轮转子叶片均采用高性能的单晶合金材料制造,但高温高压高转速的恶劣工作条件下,仍存在多种影响因素导致高压涡轮转子叶片局部超温,进而发生叶片基体脱落等恶性状况。

以最终确定为高压涡轮转子叶片局部超温原因导致的某航空发动机振动事件进行典型分析,探究造成局部超温的影响因素,充实完善振动问题数据库,为后续航空发动机振动问题的判断提供分析思维导向。

1.振动发动机分解检查情况概述

1.1 故障现象

某航空发动机试验过程中,出现振动值急剧上升,大幅超出规定值的现象。立即停止试验,用孔探仪检查发现,该航空发动机的高压涡轮转子叶片多处烧蚀。

1.2 发动机分解检查情况

故障发生后,对发动机按大组件进行了分解检查。外部管路、附件及尾喷口分解未见异常;分解加力扩散器时,发现少量金属颗粒;分解涡轮后机匣时,发现少量金属粉末状颗粒,且多为粉末状碎屑;分解低压涡轮转子组合件时,发现低压一级导向器密封片变形,低压一级涡轮叶片表面存在不同程度打伤;分解高压涡轮转子组合件时,发现16片叶片存在严重损伤掉块情况,其余叶片存在不同程度的变形,叶片叶尖磨损严重;分解主燃烧室联合单元体时,发现高压涡轮导向器叶片组上1件堵块缺失,高压涡轮导向器叶片表面存在多处不同程度的打伤,高压涡轮外环块磨损严重,外环块封严片严重变形;分解二支点支承组件时,发现二支点密封装置石墨断裂一处;分解低压单元体、高压机匣、高压压气机转子及中介机匣组件时,未见明显异常。

1.3 检定结果

因主要受损零件集中在涡轮部分,高压涡轮转子叶片受损严重,故将全台高压涡轮转子叶片(72片)委托中国航空工业集团公司失效分析中心进行分析工作。对高压涡轮转子叶片断口分析结果表明,为高压涡轮转子叶片超温导致的超温疲劳断裂。

2.高压涡轮转子叶片超温影响因素分析

叶片出现超温一般有以下几个来源:油体雾化不良、燃油品质不良、起动喷嘴油压过低等造成的燃烧不均匀,富油燃烧,火焰后移等导致的环境超温;冷却通道(气膜孔、型芯堵塞、叶片结构损坏)破坏造成温度场分布不均匀导致的局部超温等。从该航空发动机叶片试车情况以及其他部件的损伤情况,对此台高压涡轮转子叶片出现局部区域性超温的原因展开分析。

2.1 环境超温

从高压涡轮转子叶片损伤周向分布情况看,损伤掉块且超温的叶片集中在1/4的区域内。距离较远的叶片有过热,但无超温现象,可以说明高压涡轮转子叶片环境温度无明显异常,即部分叶片的超温疲劳断裂是由局部超温导致的。

2.2 局部超温

梳理经验树,导致高压涡轮转子叶片局部超温的原因有:高压涡轮转子冷却流路不畅;高压涡轮转子叶片顶端盖板脱落或翘曲;叶片内冷却通道堵塞;高压涡轮转子叶片损伤导致冷却失效。针对某航空发动机进行逐条分析。

2.2.1 高压涡轮转子冷却流路不畅

该冷却流路的空气从高压压气机出口引入转子盘腔内部,经高压压气机封严盘上的一道篦齿流入高压鼓筒轴外腔,然后又经一道篦齿与经预旋喷嘴后的主燃烧室内环腔的气流汇合后分为两股。一股经篦齿盘上的外篦齿后,从导向叶片和转子叶片根部的间隙流入主流道;另一股经篦齿盘上的孔后流入高压涡轮工作叶片,对高压涡轮工作叶片冷却后,分别从叶片前缘、盖板上和其他部位的气膜孔及尾缘的劈缝流入主流道。根据主燃烧室故检结果,预旋喷嘴处未发现异常,冷却流路未发现堵塞,故某航空发动机的高压涡轮转子叶片局部超温的原因不为高压涡轮转子冷却流路不畅。

2.2.2 高压涡轮转子叶片顶端盖板脱落或翘曲

高压涡轮转子叶片盖板缺失可造成叶片内冷却空气从顶端流出,叶片气模孔无冷却气流出,叶片气膜冷却失效,会造成叶片烧蚀掉块。检查叶片盖板,掉块较大的高压涡轮转子叶片的叶片盖板在前缘位置完全损伤,其他宏观未裂叶片的叶片盖板无明显掉块,仅存在較为严重的刮磨,及叶背叶尖棱边变形缺失。该航空发动机曾发生过高压涡轮转子叶片盖板脱落、翘曲故障,与此次事故的现象不符,且高压涡轮转子叶片已经采取多种措施,避免盖板翘曲故障发生。因此认为某航空发动机的高压涡轮转子叶片局部超温的原因为高压涡轮转子叶片顶端盖板脱落或翘曲的概率较低。

2.2.3 叶片内冷却通道堵塞

外来物堵塞高压涡轮转子叶片冷却通道,有可能导致叶片冷却的逆流裕度不足而发生超温。因此做如下工作,分解检查故障叶片榫头底部进气窗口,未发现堵塞物;解剖叶片未发现堵塞现象;复查叶片水流量均合格。据此排除某航空发动机的高压涡轮转子叶片局部超温的原因为叶片内冷却通道堵塞。

2.2.4 高压涡轮转子叶片损伤导致冷却失效

检查结果表明,一个高压涡轮导向器堵块缺失。该堵块尺寸为14.8mm×4.3mm×2.2mm,材料为K40M。装配于高压涡轮导向叶片上缘板后端,用真空钎焊方法固定,主要作用是封堵叶片缘板铸造时的工艺退渣口。

将全台共计72片高压涡轮转子叶片做能谱分析,结果表明第14块高压涡轮转子叶片表面存在K40M,且所有高压涡轮转子叶片表面未见其他异常外来成分。这表明缺失的高压涡轮导向器堵块脱落,并且撞击了高压涡轮转子叶片。分析认为如果高压涡轮转子叶片受到外物打伤产生裂纹或裂口,裂纹或裂口损伤随着高压涡轮转子工作出现扩展,使高压涡轮转子叶片内部冷却空气从损伤处流出,叶片气模冷却失效造成叶片超温烧蚀,在中国航空工业集团公司失效分析中心分析报告中,有3片叶片疲劳起源特征为外物打伤。

因此,高压涡轮转子叶片受到外物打伤引起叶片冷却失效有很大可能是某航空发动机高压涡轮转子叶片局部超温的主要原因。

3.某航空发动机故障检查结论并改进工艺

在初步判定为高压涡轮导向器堵块脱落打伤高压涡轮转子叶片引起叶片冷却失效后,有大量的故障检查事实满足以上推论,如:高压涡轮导向器工艺堵块掉落;高压涡轮转子叶片损伤严重;高压涡轮导向器及其他高压涡轮后的流道件均有不同程度损伤;高压涡轮之前的流道件故检未发现异常;掉块叶片主要集中在周向约1/4区域内;故障起始发生在高压涡轮导向器和高压涡轮之间;从断口分析结果来看,高压涡轮转子叶片出现疲劳断裂是由于叶片超温造成材质疲劳性能下降,在源区应力集中(气膜孔和烧蚀缺陷)和振动应力作用下出现疲劳开裂和扩展,最终导致掉块;从试车情况分析,应是高压涡轮转子叶片发生故障后引起的振动;从以往高导叶片堵块脱落故障分析,由于高导堵块焊接工艺存在问题,堵块存在脱落的可能性,且堵块脱落对高压涡轮转子叶片等零件会造成伤害;从故障原因分析,高导叶片堵块脱落打伤高压涡轮转子叶片可以造成高压涡轮转子叶片冷却失效导致局部超温,进而发生撕裂掉块等。

依据分析推得故障模式:发动机工作时,一个高压涡轮导向器堵块发生脱落,掉落在高压涡轮导向器与高压涡轮转子叶片之间的流道内。堵块随着气流撞击到高速旋转的高压涡轮转子某些叶片前缘,对这些叶片产生伤害,形成裂纹或裂口。裂纹或裂口损伤在热应力、离心应力及振动应力等的共同作用下,逐步扩展,导致高压涡轮转子叶片冷却失效,致使叶片超温造成材质疲劳性能下降,进而发生撕裂掉块的情况。撕裂掉块的叶片残骸四散,对相邻高压涡轮转子叶片继续产生伤害。叶片的撕裂掉块影响了附近其他叶片的冷却效果,致使其他叶片也发生了超温的情况。多个叶片的损伤使得高压涡轮转子平衡被破坏,高压涡轮转子发生振动,发动机振动值激增,振动引起高压涡轮转子异位,高压涡轮转子叶片与高压涡轮机匣外环以及空气导管与低涡轴等发生异常碰磨。

至此,某航空发动机试验过程中振动故障的原因判定为高压涡轮导向器堵块脱落。针对此问题,将高压涡轮导向器堵块的工艺方法由真空钎焊改为氩弧焊,某航空发动机后续试验过程中杜绝了此类问题的发生。

结语

航空发动机的发展很大程度上是由于一次又一次解决了振动问题。振动影响因素众多,如何准确抓住发动机振动的罪魁祸首,本次试验过程振动的排除方法可供相关技术人员借鉴:

(1)全面系统检查故障航空发动机,得到翔实的故障检查结论;

(2)抓住故障检查结论重要部分进行最高能力分析;

(3)查阅振动问题数据库寻找故障发生可能原因,利用排除法分析;

(4)大胆假设最可能原因,寻找事实证明,推理故障模式;

(5)判定故障原因,进行技术改进,充實航空发动机振动问题数据库。

在航空发动机振动问题的解决上,充实完善航空发动机振动问题数据库、建立符合航空发动机体系的分析问题方法,才是解决振动问题,提升航空发动机试验技术的正确途径。

参考文献

[1]柯招清.高温燃气涡轮叶片的内部冷却和脉动气膜冷却的数值研究[D].合肥,中国科学技术大学,2016.

[2]任志远,韦周庆.航空发动机整机振动问题中的高低压耦合振动研究[J].中国新技术新产品,2017(341):48-49.

[3]赵文侠,李莹,范映伟,等.涡扇发动机二级转子叶片超温断裂分析[J].材料工程,2012(8):39-44.

猜你喜欢

航空发动机
关于《航空发动机结构与系统》课程改革的探索
基于小波分析的航空发动机气动失稳信号分析方法
“航空发动机强度与振动”教学改革的探索与思考
军用高性能航空润滑油发展趋势研究