APP下载

广州市政道路CORS测量与数据分析研究

2017-06-09赵斌

科技资讯 2017年11期
关键词:工程测量道路

赵斌

摘 要:该文以某市政道路东延测量任务为背景,以CORS技术在市政道路测量的应用为研究对象。该文首先分析了市政道路測量的主要内容,进而详细研究了外业施测的内容,包括绘制大比例尺带状地形图、道路中线测设和道路纵横断面测量3个方面,最后探讨了观测数据的分析思路,证明了CORS测量满足道路工程测量的要求。

关键词:CORS 道路 工程测量 观测数据分析

中图分类号:TB22 文献标识码:A 文章编号:1672-3791(2017)04(b)-0099-02

传统的公路勘测工作辛苦且繁琐,存在着勘测周期长、工作效率低等诸多问题。从经纬仪的偏角法、全站仪的极坐标法,设置基站并采用电台通信的常规RTK测量到目前基于CORS的网络RTK实时放样,最大限度地减轻公路勘测工作量、提高公路勘测效率和勘测精度,一直是公路勘测工作者孜孜以求的目标。CORS应用于道路工程测量,主要包括采用网络RTK进行带状地形图的绘制,道路中线的测设,道路纵、横断面图测量等。在此次试验中由于时间有限,没有对道路工程的整个测量过程进行试验,重点介绍了道路中线的定线测量和道路的纵横断面测量的过程、数据的处理并进行了精度分析。

1 工程概况

受广州市市政公用事业局委托,对该市某道路东延进行了道路测量定线测量、纵断面测量、施工控制点测量等测量工作。该工程是市重点项目之一,总长1 460 m。测区内地势平坦、交通方便,但沿途建筑物较密集、车流量较大、通视条件不好。采用常规方法测量工作任务重、效率低。考虑用CORS下的网络RTK技术进行此次道路测量任务。

2 测量内容

2.1 绘制大比例尺带状地形图

在道路选线时通常是在大比例尺(1∶1 000或1∶2 000)带状地形图上进行。用传统方法测图,要先进行控制测量,然后进行碎部测量,绘制成大比例尺地形图。传统的地形控制测量采用三角网、导线网的方法来实测,这些方法最大的缺点就是受地形条件影响较大,要求相邻控制点间必须通视。在技术规范中对图形、边长有相应的要求,在野外踏勘、选点、埋设标记过程中花费大量的人力和物力。与此同时,在外业施测过程中不能实时知道导线的精度是否满足技术要求。外业完成后回到室内进行平差处理后,一旦不满足技术要求须返工重测。用GNSS静态模式进行控制测量为了保证控制网的精度和可靠性,需要加强控制网的几何强度、增加闭合条件、延长观测时间取得大量冗余观测。

GNSS网络RTK技术打破了常规RTK中流动站和参考站距离较近的限制,增大了流动站与参考站的作业距离。用户作业范围可由最多20 km扩大到50~70 km甚至更远,并且能够完全保证精度。利用CORS下网络RTK进行测图,真正意义上的改变了传统的先控制后碎部的测图模式。这种作业模式是利用几个永久性的参考站同时向流动站发送差分信息,极大地提高了流动站点位精度。理论上整网范围内的流动站点位精度是相同的,与此同时差分服务范围扩展到网外60 km。

2.2 道路中线测设

在完成道路线形图上定线后,需将道路中线在地面标定出来。传统的放样方法是根据道路的设计参数计算出中桩的桩号和设计坐标(一般每隔20 m或50 m及其倍数设立一个整桩,在地形变坡地、曲线的主点处、土质变化及地质不良地段,与已有建筑物、构筑物相交的地方设立加桩),然后将全站仪安置在控制点上进行放样。这种放样方法需要控制点与放样点之间通视,放样点的误差不均匀。采用CORS下网络RTK放样,只需将中线桩点的坐标输入GNSS手簿中,系统就会定出放样的点位。由于每个点的测量都是独立完成的,不会产生累积误差,各点放样精度趋于一致。因此运用网络RTK放样真正实现了单机作业,测量员只要手持GNSS接收机就可独立完成道路中桩测设。

2.3 道路纵横断面测量

道路中线测量完成以后,还必须进行道路纵、横断面测量。纵断面测量是测定各中桩地面高程并绘制道路纵断面图,用于路线的纵坡设计;横断面测量是测定各中桩处垂直于中线的地形起伏状态并绘制横断面图,用于路基设计、土石方计算和施工时的边桩放样。利用CORS网络RTK具有三维坐标测量的功能,在中桩放样过程中就顺便测量出中桩的高程,避免了重复测量工作。在测量过程中需要测站点和待测点需要通视,在地形复杂的地区也存在搬站测数较多的问题。

采用CORS下的网络RTK技术改变了传统的测量模式,道路中线确定后,根据采集的中线桩点坐标通过绘图软件便可绘出道路纵横断面图。加拿大魁北克省交通厅用特制的汽车实施GNSS-RTK动态测量绘制高速公路断面,获得良好效果。与传统方法相比,在精度、经济、实用各方面都有明显优势。

3 外业施测

在施测前制定了测量方案。包括依据有关标准制定出作业方法和技术要求、保证质量的主要措施和要求等,投入仪器设备:LEICAGX1230GNSS双频接收机1台,NIKON全站仪(2")1台,DS3水准仪1台,完成了以下具体测量任务。

(1)道路中线测设:根据道路现状边线进行内业解算道路中线桩号和中桩坐标,每隔20 m解算一个中桩,在企事业单位门口、地形变坡地、有道路相交的地方进行加桩。利用网络RTK的放样功能将上述解算的点放于实地,用全站仪进行坐标采集,差值均在±5 cm内。

(2)纵断面测量:是在中线测设的基础上进行的。以测区附近已有四等水准点为高程起算点,按照图根水准的精度要求(附合线路闭合差≤30(mm),L为附合路线长度(km))沿中桩逐桩布设为附合水准路线经过平差计算后得出施测桩位的地面高程。测量完毕将同一个中桩点的水准高程和RTK采集高程做比较,差值均在±4 cm内。差值大的应分析原因,防止粗差出现。

(3)施工控制点测量:利用网络RTK的数据采集功能,在相交道路口施工范围外选择了4个施工控制点。施工控制点采用三脚架方式独立测量两测回取平均值,每次观测历元数不应少于30个,两次测量平面坐标分量差值不应大于±2 cm,如果超限应重新测量。测量完毕应用全站仪对控制点距离进行检测,检测相对误差不应大于1/4 000。

4 观测数据分析

观测完成后,对观测数据进行了以下三项的对比。

通过表1可以看出:用网络RTK放样中桩后用全站仪回采纵坐标差值△X最大值为0.020 m,横坐标差值最大值为0.012 m,点位误差最大值出现在桩号为k0+22处,最大误差为 m,满足点位误差值均在±5 cm内的要求。

通过表1可以看出:在测设完中桩,通过网络RTK采集中桩高程与经水准点联测平差计算后出的高程比较,高程差值最大值出现在桩号为k0+380处,最大值为-0.025 m,满足差值均在±4 cm内的要求。在该次试验中网络RTK高程测量的高精度取决于市CORS系统似大地水准面模型的建立。

通过表2、表3可以看出:用网络RTK对施工控制点独立测量两测回后,两次观测值差值最大值出现在T1处,最大值为 mm,满足两次测量平面坐标分量差值均不应大于±2 cm的要求。对控制点坐标取其平均值后,通过坐标反算计算出T1-T2、T3-T4的距离,随后用全站仪对控制点距离进行检测,相对误差最大值出现在边T3-T4处,最大值为1/30 854。相对误差均满足不应小于1/4 000的要求。

参考文献

[1] 李华.浅谈GPS技术在公路外业测量中的应用[J].科技资讯,2010(16):22-24.

[2] 高华峰,张海春.RTK技术结合全站仪在土地平整测量中的应用[J].测绘与空间地理信息,2007(2):11-12.

[3] 梁琦.浅谈地质勘察测绘中的RTK技术[J].中国新技术新产品,2011(12):55-57.

猜你喜欢

工程测量道路
道听途说
小小的道路,大大的勇气
城市的道路为什么叫马路
民办高校工程测量教学改革与思考
GPS测量技术在工程测量中的应用
以技能竞赛为导向《工程测量》教学改革研究
一次骑行带来的感悟
各种各样的道路