1: 狗牙根Cynodon dactylon(Linn.)Pers. 2: 棒头草 Polypogon fugax Nees ex Steud. 3: 大画眉草Eragrostis cilianensis (All.) Link ex Vignolo-Lutati. 5: 看麦娘 Alopecurus aequalis Sobol. 6: 菵草Beckmannia syzigachne(Steud.)Fern. 7: 刺蓼Polygonum senticosum (Meisn.) Franch. et Sav. 10: 小飞蓬 Conyza canadensis (L.) Cronq. 11: 鼠麯 Gnaphalium affine D. Don. 13: 苣荬菜 Sonchus arvensis L. 16: 积雪草Centella asiatica (L.) Urban. 19: 水蓼Polygonum hydropiper. 21: 空心莲子草 Alternanthera Philoxeroides(Mart.)Griseb. 22: 刺苋 Amaranthus spinosus. 24: 毒芹 Cicuta virosa L. 26: 毛豆 Glycine max. 27: 阴石蕨 Humata repens (L. f.) Diels. 28: 毛茛 Ranunculus japonicus Thunb. 29: 通泉草 Mazus japonicus (Thunb.) O. Kuntze. 35: 雪见草 Salvia plebeia R. Br. 36: 旋覆花 Inula japonica Thunb. 37: 假稻 Leersia japonica (Makino) Honda. 38: 鸭跖草 Commelina communis. 40: 野老鹤草 Geranium carolinianum L. 41: 黄鹌菜Youngia japonica. 43: 簇生卷耳Cerastium caespitosum Gilib. The same below. ButtElev:Elevation factor; Shapindx:Shape coefficient; HydrChar:Hydrological characteristics; HygrCoef:Soil moisture absorption coefficient; Distance:Distance away from the water. 图2 物种与环境因子的RDA贡献率双序图Fig.2 RDA double sequence diagram of species and environmental factors
3.2.2 植被分布对滩地相对水面高差因子变化的响应关系 滩地相对水面高差因子是影响植被分布最显著的因子,以灵山港上游溪口四桥滩地(L1)、中游周村滩地(L6)、下游高铁桥滩地(L9)以及衢江口彩虹桥滩地(L10)为例,说明不同区段滩地内,相对水面高差因子对植被分布的影响。4个滩地内,植被分布的相对水平面高差云图见图3~图6。
图3 上游区段植被空间分布Fig.3 Spatial distribution of vegetation in the upper reaches
图4 中游区段植被空间分布Fig.4 Spatial distribution of vegetation in the middle reaches
图5 下游区段植被空间分布Fig.5 Spatial distribution of vegetation in the lower reaches
图6 河口植被空间分布Fig.6 Spatial distribution of vegetation in the estuary
可见,I、II、IV、VI、VIII、IX类植被主要生长在高差较大的滩地内部,满足其排水和向阳条件,III、V、VII类植被主要生长在高差较小的临水边,满足其水分需求较高的特点。各类植被的分布特点也存在一定的差异。I类植被(通泉草、牛毛毡、鼠麯、小飞蓬和狗牙根等)广泛分布于高差0.25~1.2 m内,且易形成大片群落。主要是因为该区间内,土壤受水流作用,土层松动,沙性明显,水分条件及排水较好,适宜I类植被生长。II类植被(小花糖芥、细风轮菜和旋覆花等)分布范围较广,主要分布在高差>1.8 m的位置。IV类植被(艾草、野豌豆和北美车前等)大多分布于高差1.8~2.1 m内,少部分会出现在临水边0.36~0.54 m处。V和VII类植被(沿阶草、积雪草、水蓼等)主要分布于高差<0.9 m的临水边,主要是因为积雪草叶片中的机械组织不发达,抗旱能力极差,是阴生湿生植物,而蓼科和莎草科等阳生湿生植被,根系不发达,没有根毛,但根与茎之间有通气的组织,以保证取得充足的氧气,生活在阳光充足、土壤水分饱和的沼泽地区或湖边。III类植被(棒头草、假稻、鸭跖草和酸模叶蓼等)会与V和VII类植被集群分布。VI类植被(刺蓼、阴石蕨和野菊等)主要分布于高差0.4~1.25 m(刺蓼、山大颜和毒芹)、1.8~2.4 m(阴石蕨和野菊)的位置。VIII和IX类植被主要分布于高差1.8~2.0 m的位置,在滩地内缘有少量出现。
由图7和图8可知,滩地植被从外缘到内缘(高差从小到大),生物量在逐渐增大,且植被多样性随着滩地相对水面高度的增加而增加,对应的植被扩散斑块(圆域面积)大小在逐渐扩增。总体而言,地形高度的差异,可以作为植被种类的分界线,滩地植被从滩地外缘到滩地内部的分布规律为:耐水性由强到弱,丰富性由低到高,生物量由小到大。
图7 滩地外缘至内缘植被生物量变化Fig.7 Biomass variation from outer to inner edge of floodplain
图8 不同相对水面高度下的植被多样性Fig.8 Vegetation Shannon-Wiener under different relative elevation of water
3.2.3 植被分布对形态系数的响应关系 滩地总体形态变迁是影响植被多样性的另一个重要因素,稳定的滩地生境是植被分布特征优化,以及发挥生态效益最大化的重要保障。由图9可知,随着滩地Pe/Pa指数的增大,植被覆盖率也随之增大。从图3~6亦可看出,短宽和窄长滩地对等高线分布及滩地断面植被容纳量有明显的影响。选择滩地边缘线发育系数SDI(即Richardson所提出的紧凑度C0的倒数,SDI=1时,滩地形态近似圆形)和滩地横纵径(短长轴)比值Pe/Pa(避免SDI较大时,滩地出现过分窄长的情况),来反映滩地形态的弯曲和狭长。Pe/Pa和SDI与植被多样性响应关系分别见图9和图10。
图9 Pe/Pa与植被覆盖度和多样性的响应关系Fig.9 Response of coverage and Shannon-Wiener to Pe/Pa
图10 SDI与植被多样性的响应关系Fig.10 Response of Shannon-Wiener to SDI
由图10可知,灵山港滩地SDI系数>2的占滩地总数的70%,说明滩地紧凑度不大,岸线几何形状较为复杂。在自然情况下,滩地植被多样性随着SDI系数的变化而变化,两者呈现同样的趋势效应,节点变化同一性极高。当SDI值处于2.0~4.0之间时,滩地平均植被多样性>1出现的频率占全局60%以上。图9显示,滩地植被多样性随着Pe/Pa的增大而减小;由Q-Q检测可知,各点分布于直线附近,且K-S检验的渐近显著性系数为0.580>0.05。因此,灵山港滩地的形态特征服从正态分布规律,滩地整体形态稳定性较好,而且,当Pe/Pa值在0.12~0.3之间时,植被多样性维持在1.03~1.96之间的次数出现6次占60%。即至少有60%的保证率使得SDI系数处于2.0~4.0之间,且滩地狭长指数Pe/Pa值在0.12~0.3之间时,滩地植被多样性较高。
3.2.4 植被分布对水文特性的响应关系 从植被空间变异特征(图11)可知,距离水边10 m以内,指数的平均差异性Δr(h)约为0.100,空间变异幅度较小,这主要是由于滩地临水边缘小区域受水流影响较大,植被物种差异性不明显,多为喜湿耐冲型植被,将这一区域称为低变幅区。距离水边10~25 m时,指数的平均差异性Δr(h)达0.206,空间变异幅度较大,这主要是由于微地貌的变化,使得滩地淹没所需水流深度增加,这一因素的限制,在平水位情况下,水力冲蚀削弱,主要生长中生型植被,植被种类丰富,将这一区域称为高变幅区。距离水边>25 m时,指数的平均差异性Δr(h)仅为0.052左右,无明显的空间变异性(寺下、上扬村受人为干扰,变异性依旧较大),此时结构因子正在逐渐替代水文特性成为主导因子,且由表3可知,变程值a均>25 m;因此,将这一区域称为平稳区,主要为乔灌草结构。
图11 植被空间相关性曲线Fig.11 Vegetation spatial correlation curve
将低变幅区与高变幅区,即离水边缘25 m以内的植被带,作为植被分布对水文特性响应关系的研究区域。各区段滩地外缘植被带土壤性质、植被多样性和生物量的变化见表4。
由表4可知,同一滩地低变幅区土壤中砂粒质量分数比高变幅区的大,且低变幅区的土壤质地类别中,壤质砂土出现频率极高,达到80%。究其原因,土壤颗粒组成受水文特性的影响极大,水流冲刷和淘蚀滩地岸线,土壤中的粉粒和黏粒等细粒物质大量流失,越靠近河流的淹没带,越容易受到其影响,致使粉黏粒质量分数下降,砂粒质量分数增加。水流作用改变了植物根系与土壤之间物质交换属性,使得植被的空间分布也存在异质性。
表4 植被分布对水文特性的响应
从植被形态可塑性角度看,为了适应高流速、大紊动的水流条件,滩地外缘植被的叶片和杆茎均为轻柔和狭长,能够顺水流方向倾伏,以克服水流的拖拽力及紊动卷携,从而保持在该条件下的生存能力。表现为在滩地外缘25 m带宽范围内,蓼科和棒头草出现的频率均占40%,菵草和狗牙根出现的频率均占30%,沿阶草出现的频率占10%,均为喜湿耐冲型植被,与内缘植被差异性较高。从植被生长属性角度看,灵山港滩地基本呈现上、下游区段植被多样性较高,生物量较低,而中游区段植被多样性较低,生物量较高的现象。这是由于上、下游水流适度的扰动及短期水位变动,为低多样性集群物种的存活率创造了条件,在主要植被类型基础上,新增细风轮菜、通泉草、小飞蓬、鼠麯、小花糖芥、鸭跖草和积雪草等植被物种,使得植被带宽内多样性指数较大;但由于物种茎秆及根系较小,生物量相对较低。而中游在集中的木本植被阻流缓冲和局地小气候效应影响下,植被带宽内水文效应薄弱,滩地生境稳定,种类单一化明显,多为阴石蕨、沿阶草和毒芹等,使得植被多样性较小;但由于庞大的小块根及高含水量,使得生物量较大。
4 结论
1)由植被空间关联性分析,将灵山港滩地分为低变幅区、高变幅区和平稳区3个区域。其中,植被分布受随机因子与结构因子的共同影响,在滩地外缘至岸边,植被类型表现为喜湿耐冲型植被、中生植被、中生植被+乔木+灌木的过渡。
2)山丘区河道滩地植被分布的关键驱动因子为滩地相对水面高差因子、滩地形态系数和水文特性。从整体范围上看,植被分布对关键驱动因子敏感性大小依次为滩地相对水面高差因子>滩地形态系数>水文特性。
3)地形高度的差异可以作为植被种类的分界线,滩地植被的分布从滩地外缘到滩地内部,耐水性由强到弱,丰富性由低到高,生物量由小到大。
4)滩地不可能无限发育,有其自身的极限展长与极限展宽。当SDI系数处于2.0~4.0之间,且滩地狭长指数Pe/Pa值在0.12~0.3之间时,至少有60%的保证率,使得滩地植被多样性能维持在较高水平。
5)河道水文特性会从不同程度影响植被的空间关联性,如植被形态特征与生境条件。水文特性作用下,常表现为滩地外围植被带砂粒质量分数随离水距离增大而减少。外围植被带中,蓼科、棒头草、菵草、狗牙根和沿阶草等,对水文环境适应能力极佳,可用于生态修复建设过程中优先选择的对象。
[1] 廖建华,李丹勋,王兴奎,等. 长江上游植被覆盖的时空分异季节变化及其驱动因子研究[J].环境科学学报,2009,29(5): 1103. LIAO Jianhua, LI Danxun, WANG Xingkui, et al. The spatial-temporal distribution of seasonal vegetation changes and their driving forces in the upper reaches of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2009, 29(5):1103.
[2] 郭二辉,孙然好,陈利顶. 河岸植被缓冲带主要生态服务功能研究的现状与展望[J].生态学杂志,2011,30(8):1830. GUO Erhui, SUN Ranhao, CHEN Liding. Main ecological service functions in riparian vegetation buffer zone: research progress and prospects[J]. Chinese Journal of Ecology, 2011, 30(8):1830.
[3] 孙彭成,高建恩,王显文,等. 柳枝稷植被过滤带拦污增效试验初步研究[J].农业环境科学学报,2016,35(2):314. SUN Pengcheng, GAO Jianen, WANG Xianwen, et al. Effectiveness of switchgrass vegetative filter strip in intercepting pollutants and promoting plant biomass[J]. Journal of Agro- Environment Science, 2016, 35(2):314.
[4] 林俊强,严忠民,夏继红. 微弯河岸沿线扰动压强分布特性试验[J].水科学进展,2013,24(6):855. LIN Junqiang, YAN Zhongmin, Xia Jihong. Laboratory experiments on pressure distribution along sinuous riverbanks[J]. Advances in Water Science, 2013, 24(6):855.
[5] 夏继红,陈永明,王为木,等. 河岸带潜流层动态过程与生态修复[J].水科学进展,2013,24(4):589. XIA Jihong, CHEN Yongmin, WANG Weimu, et al. Dynamic processes and ecological restoration of hyporheic layer in riparian zone[J]. Advances in Water Science, 2013, 24(4):589.
[6] 夏继红,林俊强,姚莉,等. 河岸带的边缘结构特征与边缘效应[J].河海大学学报(自然科学版),2010,38(2):215. XIA Jihong, LIN Junqiang, YAO Li, et al. Edge structure and edge effect of riparian zones[J]. Journal of Hohai University(Natural Sciences),2010,38(2):215.
[7] 高敏,槐文信,赵明登. 滩地植被化的顺直复式河道漫滩水流计算[J].节水灌溉,2008(6):21. GAO Min, HUAI Wenxin, ZHAO Mingdeng. Overbank flow calculation for straight compound channel with vegetated floodplain[J].Water Saving Irrigation,2008(6):21.
[8] 王月容,周志翔,周金星,等. 长江滩地植被缓冲带类型及功能与生态重建[J].湖北林业科技, 2010(4):5. WANG Yuerong, ZHOU Zhixiang, ZHOU Jinxing, et al. Type,function and ecological reconstruction of vegetated buffer strips in Yangtze River Beach[J]. Hubei Forestry Science and Technology, 2010(4):5.
[9] 闫静,唐洪武,田志军,等. 植物对明渠流速分布影响的试验研究[J].水利水运工程学报,2011(4):138. YAN Jing, TANG Hongwu, TIAN Zhijun, et al. Experimental study on the influence of vegetation on the velocity distribution of open channel flows[J]. Hydro-Science and Engineering, 2011(4):138.
[10] 陈正兵,江春波.滩地植被对河道水流影响[J].清华大学学报(自然科学版), 2012,52(6):804. CHEN Zhengbing, JIANG Chunbo. Effect of floodplain vegetation on river hydrodynamics [J].Journal of Tsinghua University (Science and Technology), 2012,52(6):804.
[11] DWIRE K A, KAUFFMAN J B, BROOKSHIRE E N J, et al. Plant biomass and species composition along an environmental gradient in montane riparian meadows[J]. Oecologia, 2004, 139(2):309.
[12] BURTON M L, SAMUELSON L J. Influence of urbanization on riparian forest diversity and structure in the Georgia Piedmont, US[J]. Plant Ecology, 2008, 195(1):99.
[13] MOFFATT S F, MCLACHLAN S M, KENKEL N C. Impacts of land use on riparian forest along an urban-rural gradient in southern Manitoba[J]. Plant Ecology, 2004, 174(174):119.
[14] 李悦,马溪平,李法云,等.细河河岸带植物多样性研究[J].广东农业科学,2011(19):131. LI Yue, MA Xiping, LI Fayun, et al. Study on plant species diversity of riparian zone along Xi river[J].Guangdong Agricultural Sciences,2011(19):131.
[15] 孟伟,张远,渠晓东等.河流生态调查技术方法[M].北京:科学出版社,2011:65. MENG Wei, ZHANG Yuan, QU Xiaodong, et al.Technical methods of river ecological investigation[M]. Beijing: Science Press, 2011:65.
[16] 惠刚盈,胡艳波,赵中华. 基于相邻木关系的树种分隔程度空间测度方法[J].北京林业大学学报,2008,30(4):131. HUI Gangying, HU Yanbo, ZHAO Zhonghua. Evaluating tree species segregation based on neighborhood spatial relationships[J]. Journal of Beijing Forestry University, 2008, 30(4):131.
[17] 惠刚盈,Gadow K V,胡艳波.林分空间结构参数角尺度的标准角选择[J].林业科学研究,2004,17(6):687. HUI Gangying, Gadow K V, HU Yanbo. Theoptimum standard angle of the uniform angle index[J]. Forest Research, 2004, 17(6):687.
[18] 麻雪艳,周广胜. 春玉米最大叶面积指数的确定方法及其应用[J].生态学报,2013,33(8):2596. MA Xueyan, ZHOU Guangsheng. Method of determining the maximum leaf area index of spring maize and its application[J]. Acta Ecologica Sinica, 2013, 33(8):2596.
[19] 李斌.青藏高原植被时空分布规律及其影响因素研究[D]北京:中国地质大学出版社,2016:62. LI Bin. Study of vegetation’s spatial and temporal distribution and influencing factors on the Tibetan Plateau[D]. Beijing: China University of Geosciences,2016:62.
Vegetation distribution and its driven-forces on the floodplains of small and medium rivers in hilly area
YU Genting1, XIA Jihong1, BI Lidong1, WANG Yingjun2, LIN Lihuai1, CAO Weijie1, YI Zihan1
(1.College of Water Conservancy and Hydropower, Hohai University, 210098, Nanjing, China; 2.Water Conservancy Bureau, 324400, Longyou, Zhejiang, China)
[Background] Vegetation in riparian zone is an important buffer to sustain the health of a river system. It is a typical ecotone characterized as edge effect, and plays a significant role in the conservation of river system health. Therefore, it is vital to know how the vegetation in floodplain distributes and what the driven-forces of the distribution are. [Methods] Taking the Lingshan River, in Longyou County, Zhejiang Province, as a typical example of small and medium rivers in hilly area, the characteristics of the vegetation distribution and its driven-forces were studied. After investigating the vegetation species in the quadrat sampling, the data was calculated and analyzed using the Clustering Analysis (CA) in SPSS software, and the Redundancy Analysis (RDA) in Canoco5 software and through which the composition and cluster numbers of vegetation species, the cosine of the angle at the origin of the two vectors, the contribution rate of driven-forces were calculated. On the basis of GPS site survey and the maps downloaded from Google Earth, the elevation and shape coefficient were analyzed by Digital Elevation Model (DEM) in Surfer software. Then combined with the regression analysis, the relationship between the vegetation and driven-forces were obtained. [Results] In the floodplain of Lingshan River, there were 62 vegetation species (61 kinds ofAngiospermaesand one kind ofPteridophyta) and the vegetation community structure was mainly divided into 9 classes. The major three driven-forces of the vegetation distribution were elevation factor (ButtElev), shape coefficient (Shapindx) and hydrological characteristics (HydrChar), and their contribution rates were 37.50%, 27.50%, 16.82%, respectively. Particularly, under the influence of ButtElev, from outer to inner edge of floodplain, the moisture capacity varied from strong to weak, the diversity varied from low to high, and the biomass varied from small to large. There was at least 60 percent of the guarantee rate making the vegetation diversity between 1.03 and 1.96 when the SDI coefficient was between 2.0 and 4.0, and the Pe/Pa was between 0.12 and 0.3. The hydrological characteristics affected the morphological plasticity of vegetation and the habitat conditions of the floodplain. The sand content in the outer zone of the floodplain decreased with the increase of the distance from the water, and the anti-scour ability and moisture capacity of the vegetation decreased from strong to weak. [Conclusions] The elevation factor, shape coefficient and hydrological characteristics are the key driven-forces of vegetation distribution in small and medium rivers in hilly area. When we design ecological restoration projects, the three factors should be focused on, and the suitable measures should be employed in order to control and optimize the three factors.
hilly area; small and medium rivers; floodplain; vegetation distribution; driven-forces
2016-09-19
2017-03-23
项目名称: 国家自然科学基金“蜿蜒型河岸带潜流层水动力学机制及溶质运移规律研究”(41471069);浙江省水利科技项目“龙游县中小河流滩地时空演化机理及生态修复技术研究”(RC1527)
余根听(1992—),男,硕士研究生。主要研究方向:河岸带生态机理。E-mail: yugenting@hhu.edu.cn
†通信作者简介: 夏继红(1970—),男,教授,博士生导师。主要研究方向:河岸带生态机理。E-mail: syjhxia@hhu.edu.cn
X171
A
2096-2673(2017)02-0051-11
10.16843/j.sswc.2017.02.007