阿尔金断裂东端酒西盆地古近系物源分析及意义
2017-06-05叶玥豪王自剑王成善朱利东岳雅惠
邓 斌, 冉 波, 叶玥豪, 王自剑, 王成善, 朱利东, 田 庆, 岳雅惠
(1.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059; 2.生物地质与环境地质国家重点实验室(中国地质大学),北京 100083; 3.大陆碰撞和青藏高原隆升重点开放实验室,中国科学院青藏高原研究所,北京 100101)
阿尔金断裂东端酒西盆地古近系物源分析及意义
邓 斌1, 冉 波1, 叶玥豪1, 王自剑1, 王成善2, 朱利东1, 田 庆1, 岳雅惠3
(1.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059; 2.生物地质与环境地质国家重点实验室(中国地质大学),北京 100083; 3.大陆碰撞和青藏高原隆升重点开放实验室,中国科学院青藏高原研究所,北京 100101)
探讨酒西盆地古近纪沉积与阿尔金左行走滑断裂的关系。通过对酒西盆地西部红柳峡剖面古近系火烧沟组、白杨河组进行系统的沉积学和年代学分析表明:火烧沟组的砾石成分主要以中-低级变质岩和沉积岩为主,到了白杨河组则转变为以岩浆岩为主;古水流方向主体来自西部-西北部;室内砂岩碎屑鉴定结果显示古近系砂岩的碎屑成分全部落入再旋回造山带物源区;碎屑锆石U-Pb年龄测定结果表现出新元古代和中元古代2个主要的年龄峰值。综合对比酒西盆地周缘的物源区,初步认为阿尔金地体为火烧沟组和白杨河组主要的物源供给区。结合前人对阿尔金左行走滑断裂的研究,表明自渐新世以后阿尔金地体才离开酒西盆地,进一步确定阿尔金断裂带最大左行走滑量>450 km。
阿尔金断裂;酒西盆地;阿尔金地体;物源分析;走滑
作为青藏高原北缘边界并分隔青藏高原与塔里木板块的阿尔金断裂是一条全长近1 600 km的左行走滑断裂[1-3],其构造演化与走滑过程因新生代印度-欧亚板块强烈碰撞所导致的远程变形效应充满争议[1,2,4-6]。位于阿尔金断裂中-东段的一系列小型新生代沉积盆地的沉积环境变化敏感地记录了阿尔金断裂的构造运动和走滑过程[5,7-8],使其可为反演断裂的构造历史提供良好的研究素材[2,5,9-11]。前人主要针对阿尔金断裂带中段两侧新生代盆地的渐新世以来的陆相碎屑沉积物开展了系列研究[5,11],大体认为阿尔金断裂直到渐新世以后才发生了大规模的走滑运动[2,12-13]。而前人在研究阿尔金断裂东端的酒西盆地内部沉积了始新世的陆相碎屑沉积物(火烧沟组)之后,得出了阿尔金断裂的走滑活动开始于始新世的观点[3,9,14-16]。这些研究仅基于简单的地层剖面测制和砾石成分、古水流方向统计,而这种传统的沉积学方法并未给出足够充分的证据表明酒西盆地始新世沉积物与阿尔金断裂带的真实物源关系。基于碎屑锆石的U-Pb年龄频谱分析已在前人的古地理重建研究中对追踪沉积岩物源区得到广泛应用[17-18],本次研究专门挑选了最靠近阿尔金断裂的红柳峡剖面进行系统的沉积物源分析,以期分析古近纪阿尔金断裂与酒西盆地的耦合关系。
1 地质概况
酒西盆地位于现今青藏高原最北缘的河西走廊地体西北部,与周缘的阿拉善地体、塔里木地体、祁连地体和敦煌地体相邻(图1-A)。北部的黑山-宽台山断裂分割河西走廊地体与阿拉善地体的断裂带[19],该断裂向东延伸转变成龙首山断裂带[20];南部的北祁连断裂则分割了河西走廊地体与祁连地体[9];西部的阿尔金断裂则分割了河西走廊地体与敦煌地体[3]。酒西盆地新生代陆相沉积物缺失古新世沉积,从始新世开始保存完好的陆相沉积,古近纪的地层主要为始新世的火烧沟组(E3h)与渐新世的白杨河组[15,21-23]。盆地内部火烧沟组主要沉积在盆地的西部和北部[9,15],2条主要剖面分别位于西部靠近阿尔金断裂带的红柳峡地区和北部靠近宽台山-黑山断裂带的火烧沟地区(图1-B)。酒西盆地火烧沟组的岩性主要为灰白色细砾岩、深棕红色-紫红色砂岩、浅红色砂质泥岩或泥岩,顶部发育钙质结核;白杨河组的岩性主要为橘红色砂岩夹棕红色泥岩,夹石膏层与天青色砂岩条带[22]。火烧沟组与下伏下白垩统或志留系、上覆渐新世白杨河组均呈假整合或角度不整合接触[14,16]。前人利用磁性地层、古生物共同约束了火烧沟组的沉积时间范围为40.2~33.4 Ma B.P.[15]。
2 野外剖面和实验分析
2.1 野外剖面特征
红柳峡剖面位于酒西盆地的西部,与阿尔金断裂带相邻。剖面上火烧沟组出露完整,整体上可以分为3段,底部为杂色砾岩层,砾石杂乱分布,杂基支撑,分选差,最大砾石直径>30 cm,形态以次棱角为主(图3-A),且与下伏志留系的石英砂岩呈角度不整合接触(图3-B);中部的主要岩性为杂色砾岩(图3-C),夹含砾粗砂岩,砾石的排列成明显的叠瓦状(图3-D);上部以棕色粉砂岩为主,顶部可见不规则的钙质结核(图3-E),沉积环境为辫状河冲积扇。白杨河组以棕色泥岩和粉砂岩为主,可见砾石组成的透镜体(图3-F),沉积环境为河流相[14]。火烧沟组与白杨河组为假整合接触。
图1 研究区位置及地质简图Fig.1 Location and Geological map of the study area(A)青藏高原北缘新生代沉积盆地构造分布(底图来自GeoMapApp的数字高程模型,构造框架修改自文献[24-25]); (B)酒西盆地、酒东盆地与祁连地体的地质图(修改自文献[5,9-10,26])1.第四系; 2.新近系; 3.古近系; 4.火烧沟组; 5.白垩系; 6.侏罗系; 7.三叠系; 8.二叠系; 9.石炭系; 10.志留系; 11.奥陶系; 12.寒武系; 13.元古宇; 14.花岗岩; 15.深成岩; 16.上冲断裂; 17.隐伏断裂; 18.走滑断裂; 19.断层(不确定性质); 20.本次研究剖面; 21.沿阿尔金断裂两侧的盆地分布: a.江尕勒萨依盆地, b.索尔库里盆地, c.阿克塞盆地, d.肃北盆地, e.祁连盆地, f.酒西盆地, g.酒东盆地, h.张盆地, i.吐拉盆地。 JFS.金佛寺花岗岩体; ATF.阿尔金断裂带; HKF.黑山-宽台山断裂带; NQF.北祁连断裂带; LSF.龙首山断裂; MBF.庙北断裂
图2 阿尔金断裂沿线(含北祁连山前)新生代沉积盆地的地层对比及相应构造事件[3,9,11,13,15,27-29]Fig.2 Correlation of Cenozoic sedimentary basins along the Altyn Tagh fault and North Qilian Mountain with corresponding tectonic events YMC.玉门砾岩; JQC.酒泉砾岩; ATF.阿尔金断裂带
图3 酒西盆地红柳峡剖面野外照片Fig.3 Representative field photographs of the Hongliuxia section in the Jiuxi basin(A)火烧沟组底部的砾岩层; (B)火烧沟组与下伏志留系石英砂岩(S)角度不整合接触; (C)砾石层的宏观特征; (D)砾石的叠瓦状排列; (E)火烧沟组顶部的钙质结核; (F)白杨河组的河流沉积特征
在剖面测制过程中,挑选典型的叠瓦状砾石进行最大扁平面的产状进行统计,进而分析古水流方向。本次研究一共在野外统计了310组的古水流方向。同时,在剖面垂向序列的不同部位,挑选出露较好的砾石层进行成分统计。野外统计时,在1 m2的范围内,识别、统计所有砾石的成分,一共统计了2 037颗砾石。此外,在剖面上还采集了16块火烧沟组薄片样品和3个锆石样品,2块白杨河组薄片样品和1个锆石样品。此次锆石选矿样品主要采集新鲜的中-粗粒砂岩及砾岩中的砂岩透镜体,每个样品质量m>2 kg,具体位置详见图4。
2.2 室内分析
2.2.1 古近系砂岩的碎屑成分
图4 酒西盆地红柳峡剖面的岩性柱、采样位置、古水流和砾岩成分Fig.4 Lithological column, sampling location, paleocurrent measurements, and clast compositions in the Hongliuxia section of the Jiuxi basin①~④代表碎屑锆石的采样位置,菱形代表薄片的采样位置
本次研究从红柳峡剖面上采集了16块火烧沟组砂岩样品,从白杨河组中挑选了2块砂岩样品。通过野外和显微镜下的鉴定,这18块砂岩为岩屑砂岩、粗砂岩,主要为钙质胶结。为了确保统计结果的可靠性,在对每个砂岩薄片进行统计的过程中需挑选超过300个碎屑颗粒。镜下薄片观察鉴定表明,砂岩主要为石英岩屑砂岩,基质含量较少,碎屑组分多样,主要包括单晶石英、多晶石英、长石、泥岩碎屑、砂岩碎屑、燧石、板岩碎屑、片岩碎屑等。
2.2.2 锆石U-Pb年龄
本次在火烧沟组和白杨河组中挑选了4个砂岩样品进行锆石年龄测定,样品送到河北廊坊科大岩石矿物分选技术服务公司进行系统分选。锆石挑选的主要流程:在避免污染的条件下,将砂岩样品粉碎至 <60目(<250 μm),先用磁选和重液方法粗选锆石,然后在双目镜下挑选锆石颗粒,在每个样品中挑选晶型较好的锆石颗粒>120颗进行制靶。
锆石U-Pb年龄测定在中国科学院青藏高原研究所(北京)大陆碰撞与高原隆升重点实验室激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上完成。首先将人工挑选出的锆石颗粒粘贴在环氧脂表面制成样品靶并抛光,选取锆石U-Pb同位素年龄测定的打点部位和进行后续数据分析解释。实验采用激光剥蚀等离子质谱体分析技术( LAICP-MS: Inductively Coupled Plasma Mass Spectrometry) ,其原理详见文献[30]。LA-ICP-MS激光剥蚀系统为美国NewWave公司生产的UP193FX型193 nm ArF准分子系统。实验所使用激光器产自德国的ATL公司,ICP-MS为Agilent 7500a,其激光器波长为193 nm,束斑直径为10/15/20/25/35/50/75/100/125 μm可调,脉冲宽度<4 ns,脉冲频率1~200 Hz连续可调,所用的激光剥蚀物质以氦气为载气。氦气携带样品气溶胶在进入ICP之前通过一个T型三通接头与氩气(载气、等离子体气和补偿气)混合,通过调节氦气和氩气气流大小,以获得NIST SRM 612(美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质)最佳信号为条件实现测试系统最优化,利用动态变焦扩大色散,同时接收质量数相差很大的U-Pb同位素,从而进行锆石U-Pb同位素原位测定。本次实验碎屑锆石分析采用锆石91500(91500 U/Pb standard zircon)作为外部锆石年龄的标样,确保同位素辨别标准化;利用NIST612玻璃标样作为外标准,计算测试的锆石样品的U、Th、Pb含量,采用29Si作内标元素。同位素比值和元素浓度计算使用GLITTER(Version. 4.0)程序,详细的数据处理及分析方法见参考文献[31]以及《西北大学大陆动力学国家重点实验室LA-ICP-MS 数据处理步骤》指导书。采用208Pb校正法对普通铅进行校正,详细的实验流程见参考文献[32]。锆石年龄计算和谐和图的绘制使用国际标准ISOPLOT(Version3.0)[33]完成。
3 实验结果
3.1 碎屑成分
通过镜下的系统鉴定,对薄片中的主要矿物进行了定量统计:(1)石英的平均质量分数(w)为38.7%,其中单晶石英的平均质量分数为33.9%;多晶石英(不包括花岗岩、糜棱岩及碎裂岩形成的多晶石英)含量较少,平均质量分数为4.8%。在大部分薄片中,石英颗粒具有显著的波状消光特征。(2)长石平均质量分数为1.2%。(3)沉积岩碎屑平均质量分数为29.7%,主要为泥岩、砂岩碎屑和燧石碎屑。(4)变质岩碎屑平均质量分数为25.0%,主要为板岩碎屑、石英岩碎屑和碎裂岩碎屑。(5)岩浆岩碎屑平均质量分数为0.7%,仅为花岗岩碎屑;总岩屑平均质量分数为59.4%。统计结果投于Dickinson[34]和Ingersoll等[35]的Qm-F-Lt图中,显示火烧沟组和白杨河组砂岩的碎屑成分全部落入再旋回造山带物源区中(图5)。
3.2 锆石U-Pb年龄
为了确保锆石U-Pb年龄测定的可靠性,首先需排除具有明显包裹体、裂纹的碎屑锆石,然后再对挑选样品的锆石进行LA-ICP-MS年龄测定。本次研究的3个火烧沟组砂岩和1个白杨河组砂岩样品各分析90个点的数据。计算锆石年龄谐和度时对于年龄>1 Ga的采用100×(207Pb/206Pb年龄)/(206Pb/238U年龄);年龄<1 Ga的为100×(207Pb/235Pb年龄)/(206Pb/238U年龄)。将得出的数值挑选介于80~120之间的为谐和(谐和度≥80%)的,其余为不谐和的(谐和度<80%),<1 Ga的用206Pb/238U和1σ对应的年龄,>1 Ga的用207Pb/206Pb和1σ对应的年龄(图6)。最终火烧沟组的3个砂岩样品:HLX-02-21G获得33个有效数据,HLX-02-104G获得41个有效数据,HLX-02-131G获得54个有效数据;白杨河组砂岩样品HLX-01-49G获得了75个有效的锆石年龄数据。4个砂岩样品共获得184个有效数据均符合标准的年龄分布统计要求[39]。
图5 酒西盆地红柳峡剖面火烧沟组和白杨河组砂岩成分的三元相图Fig.5 Temary phase diagram of sandstone compositions of Huoshaogou and Baiyanghe Formations from the Hongliuxia section of the Jiuxi basinQm.单晶石英; F.长石; Lt.岩屑(据文献[34-35])。不同盆地的碎屑组分数据来自:(1)陈正乐等[28]; (2)方世虎等[36]; (3)本文; (4)Yin等[2]; (5)马雪等[37]
图6 酒西盆地白杨河组和火烧沟组砂岩中锆石的LA-ICP-MS U-Pb谐和图Fig.6 Zircon LA-ICP-MS U-Pb concordia diagram of metamorphic rocks from the sandstone of the Baiyanghe and Huoshaogou Formations in the Jiuxi basin
HLX-02-21G:该样品根据从90个数据中仅获得的33个有效数据进行统计分析及碎屑锆石年龄的频率分布曲线图,最小年龄为774 Ma,最大年龄为3 109 Ma,其中有一个800~950 Ma左右的峰值,最大峰值年龄为883 Ma。
HLX-02-104G:该样品根据获得的41个有效数据统计分析及碎屑锆石年龄的频率分布曲线图,年龄范围为750~2 739 Ma,有一个1 100~1 310 Ma左右的峰值,最大峰值年龄为1 308 Ma。
HLX-02-131G:该样品根据获得的54个有效数据统计分析及碎屑锆石年龄的频率分布曲线图,年龄范围为796~2 978 Ma,可见2个主要的峰值:(1)700~900 Ma左右的峰值,最大峰值年龄为828 Ma;(2)1.1~1.3 Ga左右的峰值,最大峰值年龄为1 227 Ma。
HLX-01-49G:该样品根据获得的75个有效数据统计分析及碎屑锆石年龄的频率分布曲线图,最大峰值年龄为834 Ma,最小年龄为755 Ma,最大年龄为1 266 Ma。
整体而言,红柳峡剖面火烧沟组3个砂岩样品的碎屑锆石年龄分布为0.7~1 Ga和1.1~1.3 Ga的2个主峰区间,样品间各自有少量1.4~1.6 Ga,1.9~2.1 Ga,2.3~2.6 Ga,2.7~3.2 Ga等不同成分。白杨河组1个砂岩样品的碎屑锆石年龄分布为0.7~1 Ga的明显主峰区间(图7)。4个样品的锆石wTh/wU比值主体大于0.1,显示为岩浆锆石。
图7 酒西盆地红柳峡剖面火烧沟组与白杨河组碎屑锆石年龄谱Fig.7 Detrital zircon age spectra of the Huoshaogou Formation and Baiyanghe Formation of the Hongliuxia section in the Jiuxi basin
4 讨 论
古地理重建研究中碎屑锆石的U-Pb年龄频谱在追踪沉积岩物源区得到广泛应用[17-18]。且前人对阿尔金断裂沿线的锆石U-Pb年龄频谱分析已有一定进展,主要针对2个不同的研究对象:盆地的碎屑沉积岩、地体的结晶基底。已研究的阿尔金断裂带沿线新生代沉积盆地主要包括:肃北盆地、酒西盆地、索尔库里盆地、柴达木盆地[8,10,13,40],而地体的结晶基底主要针对:敦煌地体、阿尔金地体、祁连地体、阿拉善地体和河西走廊地体(图8)。通常地体的结晶基底被看作是盆地中碎屑沉积岩的锆石主要来源,因此前人常将两者的锆石U-Pb年龄频谱进行大范围的单一匹配对比[8,10,13,40]。同时,阿尔金断裂带的走滑作用使得同一个地体的结晶基底可为另一侧不同盆地或两侧的盆地提供物源,也就是在不同盆地沉积物中呈现出相同的碎屑锆石的U-Pb年龄频谱[13]。本次研究特将阿尔金断裂沿线盆地的新生代沉积物和结晶基底中碎屑锆石的U-Pb年龄频谱进行了双重约束,以匹配酒西盆地古近系碎屑沉积物的供给物源区。红柳峡剖面火烧沟组碎屑锆石表现出0.7~1 Ga和1.1~1.3 Ga两个主要的U-Pb年龄频谱,相对白杨河组碎屑锆石却仅表现出单一的700~900 Ma年龄频谱。基于火烧沟组沉积时古水流方向的统计,剖面中下段的火烧沟组3个样品主要受到来自西部古水流和次要的南部水流所携带的物源供给,白杨河组主体接受来自西部的物源(图4)。
图8 研究区及邻区新生代沉积岩的碎屑锆石年龄频谱图Fig.8 Detrital zircon age determinations from the Cenozoic sediments in the study area and neighboring areasAT.阿尔金地体结晶基底[25,42,46-51]; QL.北-中-南祁连地体结晶基底[52]; S-QL.南祁连地体结晶基底[25]; AL.阿拉善地体结晶基底[53-57]; DH.敦煌地体结晶基底[58-62]; HX.河西走廊地体结晶基底[30,41-43]
火烧沟组3个碎屑锆石样品的主峰值0.7~1 Ga年龄频谱峰值与盆地周边地体的结晶基底中锆石U-Pb年龄频谱进行峰值对比表明:(1)0.7~1 Ga的锆石U-Pb年龄频谱主要与阿尔金地体、南祁连地体相似(图8)。(2)1.1~1.3 Ga的锆石U-Pb年龄频谱与河西走廊地体的古生代沉积物中碎屑锆石U-Pb年龄频谱相似,对青藏高原北缘主要地体的结晶基底的锆石U-Pb年龄频谱统计并未发现有类似1.1~1.3 Ga的峰值,仅河西走廊地体的古生代沉积物中碎屑锆石U-Pb年龄频谱表现出一个1~1.3 Ga的峰值[41-43]。白杨河组1个碎屑锆石样品展示出单一的700~900 Ma的U-Pb年龄峰值可受2个地体的物源支撑:阿尔金地体、南祁连地体[23]。
对于火烧沟组和白杨河组砂岩碎屑锆石中同时出现的0.7~1 Ga的锆石U-Pb年龄频谱,来自西部的古水流方向无法直接区分现今同时位于酒西盆地南部的阿尔金地体和南祁连地体,但砂岩的碎屑组分统计给出了一定的判别信息。先假定来自南祁连地体的物源供给,由于南祁连地体的物源需跨越中、北祁连山才能到达沉积区,水流即便是路过岛弧火山岩为主的中-北祁连地区[2,44],在中祁连地区肃北盆地渐新世的砂岩中表现出中祁连地区典型的岛弧火山岩碎屑物质[2]和400~500 Ma的碎屑锆石U-Pb年龄频谱[8],河流环境下的古水流不携带相应的岛弧火山碎屑物质到达酒西盆地的沉积区,而仅完整地保留南祁连地体的碎屑组分的可能性较低。相对而言,火烧沟组和白杨河组砂岩的碎屑组分表现出的再旋回造山带特征与阿尔金地体西南缘的江尕勒萨依盆地新生代沉积物一致(图5)[28],同时其碎屑锆石U-Pb年龄频谱与阿尔金地体内部的索尔库里盆地中渐新世砂岩的碎屑锆石U-Pb年龄频谱表现出惊人的一致性,除了0.7~1 Ga这个年龄频谱段,仅有极少量更老的碎屑锆石U-Pb值(图8)。当然,基于现今的阿尔金地体的地理位置来看,物源区与沉积区仍相距较远(图1)。但考虑到阿尔金断裂的左行走滑作用[45],阿尔金地体比南祁连地体具有更大的优势可以作为白杨河组的物源供给区。由于白杨河组主体是河流沉积环境,那就需要物源区比沉积区具有相应的海拔高程支撑,基于低温热年代学的数据表明渐新世中-北祁连地体处于低地状态[3],相反阿尔金地体北部在渐新世已隆升到现今的高度[29]。故本文认为阿尔金地体应为酒西盆地红柳峡剖面火烧沟组和白杨河组的物源供给区。
上面讨论了古近纪阿尔金地体与酒西盆地物源输入的密切关系,这里就提出了另一个问题:阿尔金地体如果在始新世位于酒西盆地西部,那后期阿尔金断裂则将走滑近450 km。这一推断的走滑量可得到其他区域资料的支持。李海兵等[6]研究表明青藏高原北部阿尔金断裂带北侧的北阿尔金山蓝片岩-榴辉岩高压变质带和南阿尔金山榴辉岩超高压变质带可与南侧的北祁连山蓝片岩-榴辉岩高压变质带和柴北缘榴辉岩超高压变质带作很好的对比。也有研究认为阿尔金地体从始新世就一直位于柴达木盆地的北缘,可惜柴达木盆地西缘的新生代沉积岩中碎屑锆石的U-Pb年龄频谱[40]和砂岩碎屑物质[37]却表现出不同与阿尔金地体的沉积面貌(图5、图8)。因此,本次研究更支持阿尔金断裂在渐新世以后发生了>450 km的大规模左行走滑运动[1,13,66]。
5 结 论
a.基于野外观察,火烧沟组的沉积相分为2部分:下段以冲积扇为主,上段则转变为河流相;白杨河组则以单一的河流相为主。其砾石成分也出现了明显的转换:火烧沟组砾石主要以中-低级变质岩和沉积岩为主;白杨河组则转变为岩浆岩为主。
b.火烧沟组砂岩的主要成分包括具有明显波状消光的石英、长石和变质岩-沉积岩碎屑,属于再旋回造山带的物源供给。
c.酒西盆地的古近系砂岩中碎屑锆石的U-Pb年龄测定结果表现出新元古代和中元古代2个主要的年龄峰值,结合其来自西部-西北部的古水流输入,对比青藏高原北缘主要地体的基底年龄,进一步表明现今距酒西盆地450 km以外、且位于阿尔金断裂西侧的阿尔金地体应是古近纪酒西盆地的主要物源输入区,另外还有部分来自河西走廊地体的物源供给。这一结果表明阿尔金断裂在渐新世后的走滑量>450 km。
[1] Yue Y J, Ritts B D, Graham S A. Initiation and long-term slip history of the Altyn Tagh Fault[J]. International Geology Review, 2001, 43: 1087-109.
[2] Yin A, Rumelhart P E, Butler R,etal. Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114: 1257-1295.
[3] Wang C S, Dai J G, Zhao X X,etal. Outward-growth of the Tibetan Plateau during the Cenozoic: A review[J]. Tectonophysics, 2014, 621: 1-43.
[4] Tapponnier P, Xu Z Q, Roger F,etal. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1671-1677.
[5] Ritts B D, Yue Y J, Graham S A. Oligocene-Miocene tectonics and Sedimentation along the Altyn Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins[J]. The Journal of Geology, 2004, 112: 207-229.
[6] 李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量----900 km?[J].地质通报,2007,26(10): 1288-1298. Li H B, Xu Z Q, Yang J S,etal. The maximum cumulative strike-slip displacement of the Altyn Tagh Fault — 900 km?[J]. Geological Bulletin of China, 2007, 26(10): 1288-1298. (in Chinese)
[7] 冯志硕,张志诚,李建锋,等.甘肃石包城盆地新生代沉积特征及与阿尔金断裂的关系研究[J].地质科学, 2010,45(1):181-193. Feng Z S, Zhang Z C, Li J F,etal. Cenozoic tectonics and sedimentation of Shibaocheng Basin, Gansu Province and its relationship with Altyn Tagh Fault[J]. Chinese Journal of Geology, 2010, 45(1): 181-193. (in Chinese)
[8] Li J F, Zhang Z C, Tang W H,etal. Provenance of Oligocene-Miocene sediments in the Subei area, eastern Altyn Tagh Fault and its geological implications: Evidence from detrital zircons LA-ICP-MS U-Pb chronology[J]. Journal of Asian Earth Sciences, 2014, 87: 130-140.
[9] Zhu L D, Wang C S, Zheng H B,etal. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241: 49-60.
[10] Bovet P M, Ritts B D, Gehrels G,etal. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 2009, 309: 290-329.
[11] Zhuang G, Hourigan J K, Ritts B D,etal. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China[J]. American Journal of Science, 2011, 311(2): 116-152.
[12] Yue Y J, Ritts B D, Hanson A D,etal. Sedimentary evidence against large strike-slip translation on the Northern Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 2004, 228: 311-323.
[13] Yue Y J, Graham S A, Ritts B D,etal. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh Fault[J]. Tectonophysics, 2005, 406: 165-178.
[14] 陆洁民,郭召杰,赵泽辉,等.新生代酒西盆地沉积特征及其与祁连山隆升关系的研究[J].高校地质学报, 2004,10(1):50-61. Lu J M, Guo Z J, Zhao Z H,etal. Cenozoic sedimentation characteristics of Jiuxi basin and uplift history of Northern Qilian Mountain[J]. Geological Journal of China Universities, 2004, 10(1): 50-61. (in Chinese)
[15] Dai S, Fang X M, Song C H,etal. Early tectonic uplift of the northern Tibetan Plateau[J]. Chinese Science Bulletin, 2005, 50(15): 1642-1652.
[16] 冉波,李亚林,朱利东,等.青藏高原北缘新生代早期构造运动——来自酒西盆地始新世-渐新世的沉积学约束[J].岩石学报,2013,29(3):1027-1038. Ran B, Li Y L, Zhu L D,etal. Early tectonic evolution of the northern margin of the Tibetan Plateau: Constraints from the sedimentary evidences in the Eocene-Oligocene of the Jiuxi basin[J]. Acta Petrologica Sinica, 2013, 29(3): 1027-1038. (in Chinese)
[17] Zhu D C, Zhao Z D, Niu Y L,etal. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730.
[18] Ding L, Yang D, Cai F L,etal. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean[J]. Tectonics, 2011, 32: 34-48.
[19] 吴宣志,吴春玲,卢杰,等.利用深地震反射剖面研究祁连-河西走廊地壳细结构[J].地球物理学报,1995, 38(增刊):29-35. Wu X Z, Wu C L, Lu J,etal. Research on the fine crustal structure of the Northern Qilian-Hexi Corridor by deep seismic reflection[J]. Acta Geophysica Sinica, 1995, 38(Supplement): 29-35. (in Chinese)
[20] Li X H, Su L, Song B,etal. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 2004, 49(4): 420-422.
[21] 瞿毓沛,蔡体梁.甘肃的第三系[J].甘肃地质,1984(2):1-40. Qu Y P, Cai T L. Tertiary System of Gansu[J]. Gansu Geology, 1984(2): 1-40. (in Chinese)
[22] 玉门油田石油地质志编写组.中国石油地质志卷十三(玉门油田)[M].北京:石油工业出版社,1989. Yumen Petroleum Management Bureau. Chinese Petroleum Geological Records (Vol.13): Geology of Yumen Oil Field[M]. Beijing: Petroleum Industry Press, 1989. (in Chinese)
[23] 梁世君,王发泰,胡亭,等.酒泉盆地第三系新的时代划分意见[J].石油学报,1992,13(2):102-108. Liang S J, Wang F T, Hu T,etal. A new idea on the division of Tertiary formation in Jiuquan Basin[J]. Acta Petrolei Sinica, 1992, 13(2): 102-108. (in Chinese)
[24] 葛肖虹,刘俊来.被肢解的“西域克拉通”[J].岩石学报,2000,16(1):59-66. Ge X H, Liu J L. Broken “Western China Craton”[J]. Acta Petrologica Sinica, 2000, 16(1): 59-66. (in Chinese)
[25] Wang C, Liu L, Yang W Q,etal. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China[J]. Precambrian Research, 2013, 230: 193-208.
[26] 甘肃省地质矿产局.玉门市幅1∶20万区域地质报告[R].兰州:甘肃省地质矿产局,1969. Bureau of Geology and Mineral Resources of Gansu Province. The 1∶200000 Geological Map of the Yumen Area[R]. Lanzhou: Bureau of Geology and Mineral Resources of Gansu Province, 1969. (in Chinese)
[27] George A D, Marshallsea S J, Wyrwoll K H,etal. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology, 2001, 29: 939-942.
[28] 陈正乐,刘健,孙知明,等.阿尔金山脉新生代剥露历史——前陆盆地沉积记录[J].地质通报,2005,24(4): 302-308. Chen Z L, Liu J, Sun Z M,etal. Cenozoic erosional history of the Altyn Tagh Mountains inferred from the sedimentary record of the foreland basin[J]. Geological Bulletin of China, 2005, 24(4): 302-308. (in Chinese)
[29] 孙岳,陈正乐,陈柏林,等.阿尔金北缘EW向山脉新生代隆升剥露的裂变径迹证据[J].地球学报,2014,35(1):67-75. Sun Y, Chen Z L, Chen B L,etal. Cenozoic uplift and denudation of the EW-trending range of northern Altun Mountains: Evidence from apatite fission track data[J]. Acta Geoscientica Sinica, 2014, 35(1): 67-75. (in Chinese)
[30] 张进,李锦轶,刘建峰,等.早古生代阿拉善地块与华北地块之间的关系:来自阿拉善东缘中奥陶统碎屑锆石的信息[J].岩石学报,2012,28(9):2912-2934. Zhang J, Li J Y, Liu J F,etal. The relationship between the Alxa Block and the North China Plate during the early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block[J]. Acta Petrologica Sinica, 2012, 28(9): 2912-2934. (in Chinese)
[31] Yuan H L, Gao S, Liu X M,etal. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28: 353-370.
[32] 李怀坤,耿建珍,郝爽,等.用激光烧蚀多接收器等离子体质谱仪( LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报,2009(增刊):600-601. Li H K, Gen J Z, Hao S,etal. Determination of zircon U-Pb isotopic age by laser ablation of multiple receiver plasma mass spectrometry (LA-MC-ICPMS)[J]. Acta Mineralogica Sinica, 2009(S1): 600-601. (in Chinese)
[33] Ludwig K R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center special publication, 2003, 4: 1-71.
[34] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Petrology, 1970, 40: 695-707.
[35] Ingersoll R V, Bullard T F, Ford R L,etal. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method[J]. Journal of Sedimentary Petrology, 1984, 54: 103-116.
[36] 方世虎,宋岩,赵孟军,等.酒西盆地中新生代碎屑组分特征及指示意义[J].地学前缘,2010,17(5):306-314. Fang S H, Song Y, Zhao M J,etal. Clastic composition of Mesozoic-Cenozoic reservoirs in the western Jiuquan Basin: Implications for evolution of basin range pattern and hydrocarbon accumulation[J]. Earth Science Frontiers, 2010, 17(5): 306-314. (in Chinese)
[37] 马雪,伊海生,夏国清.柴达木盆地西部新生代砂岩碎屑组分变化记录的沉积转型事件[J].地质通报,2010,29(9):1294-1303. Ma X, Yi H S, Xia G Q. Cenozoic sedimentary transformation event record by detrital components in western Qaidam basin, Qinghai, China[J]. Geological Bulletin of China, 2010, 29(9): 1294-1303. (in Chinese)
[38] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224: 441-451.
[39] Andersen T. Detrital zircons as tracers provenance: limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216: 249-270.
[40] 周海,陈亮,孙勇,等.柴达木西部第三系砂岩碎屑锆石LA-ICP-MS年龄对阿尔金造山带第三纪隆升的制约[J].地质学报,2012,86(6):906-922. Zhou H, Chen L, Sun Y,etal. Detrital zircon LA-ICP-MS ages of Tertiary sandstones from western Qaidam basin: Constraints on the uplift of Altun Mountains[J]. Acta Geologica Sinica, 2012, 86(6): 906-922. (in Chinese)
[41] Xu Y J, Du Y S, Cawood P A,etal. Provenance record of a foreland basin: Detrital zircon U-Pb ages from Devonian strata in the North Qilian Orogenic Belt, China[J]. Tectonophysics, 2010, 495: 337-347.
[42] Yuan W, Yang Z Y. The Alashan Terrane was not part of North China by the late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Gondwana Research, 2015, 27(3): 1270-1282.
[43] Zhang J, Li J Y, Liu J F,etal. Detrital zircon U-Pb ages of Middle Ordovician flysch sandstones in the western Ordos margin: New constraints on their provenances, and tectonic implications[J]. Journal of Asian Earth Sciences, 2011, 42: 1030-1047.
[44] Xiao W J, Windley B F, Yong Y,etal. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35: 323-333.
[45] Yue Y J, Liou J G. Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology, 1999, 27: 227-230.
[46] 张志诚,郭召杰,冯志硕,等.阿尔金索尔库里地区元古代流纹岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2010,26(2):597-606. Zhang Z C, Guo Z J, Feng Z S,etal. SHRIMP U-Pb age of zircons from Suoerkuli rhyolite in the Altyn Tagh mountains and its geological significations[J]. Acta Petrologica Sinica, 2010, 26(2): 597-606. (in Chinese)
[47] 张占武,黄岗,李怀敏,等.北阿尔金拉配泉地区齐勒萨依岩体的年代学、地球化学特征及其构造意义[J].岩石矿物学杂志,2012,31(1):13-27. Zhang Z W, Huang G, Li H M,etal. LA-ICP-MS zircon U-Pb geochronology and geochemistry of gabbro and diorite from Qilesayi pluton in Lapeiquan area of northern Altun Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 2012, 31(1): 13-27. (in Chinese)
[48] 张安达,刘良,孙勇,等.阿尔金超高压花岗质片麻岩中锆石SHRIMP U-Pb定年及其地质意义[J].科学通报,2004,49(22):2335-2341. Zhang AD, Liu L, Sun Y,etal. SHRIMP U-Pb dating of zircons and its geological significance from UHP granitoid gneiss in Altyn Tagh[J]. Chinese Science Bulletin, 2004, 49(22): 2335-2341. (in Chinese)
[49] 唐卓,马中平,李向民,等.阿尔金山南缘清水泉地区斜长角闪岩锆石LA-ICP-MS U-Pb测年及其地质意义[J].地质通报,2011,30(1):51-57. Tang Z, Ma Z P, Li X M,etal. Zircon LA-ICP-MS U-Pb dating of amphibolite in the southern margin of Altyn Tagh, China and its geological implication[J]. Geological Bulletin of China, 2011, 30(1): 51-57. (in Chinese)
[50] 韩凤彬,陈柏林,崔玲玲,等.阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J].岩石学报,2012,28(7):2277-2291. Han F B, Chen B L, Cui L L,etal. Zircon SHRIMP U-Pb age of intermediate-acid intrusive rocks in Kaladawan area, eastern Altun Mountains, NW China, and its implications[J]. Acta Petrologica Sinica, 2012, 28(7): 2277-2291. (in Chinese)
[51] 王忠梅,肖文交,韩春明,等.甘肃敦煌红柳峡地区石榴石斜长角闪岩的变质特征、锆石U-Pb年龄及地质意义[J].岩石学报,2013,29(5):1685-1697. Wang Z M, Xiao W J, Han C M,etal. Metamorphism, zircon U-Pb dating and tectonic implications of garnet amphibolites from Hongliuxia, Dunhuang, Gansu Province[J]. Acta Petrologica Sinica, 2013, 29(5): 1685-1697. (in Chinese)
[52] Tung K A, Yang H J, Yang H Y,etal. SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances[J]. Chinese Science Bulletin, 2007, 52: 2687-2701.
[53] Li X H, Su L, Chung S L,etal. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume?[J]. Geochem Geophys Geosyst, 2005, 6(11): 1-16.
[54] 田毓龙,武栓军,孟蓉,等.金川超镁铁质岩体LA-ICPMS锆石U-Pb年龄[J].矿物学报,2007,27(2):211-217. Tian Y L, Wu S J, Meng R,etal. LA-ICPMS zircon U-Pb age of the Jinchuan ultramafic intrusion[J]. Acta Mineralogica Sinica, 2007, 27(2): 211-217. (in Chinese)
[55] 耿元生,王新社,吴春明,等.阿拉善变质基底古元古代晚期的构造热事件[J].岩石学报,2010,26(4):1159-1170. Geng Y S, Wang X S, Wu C M,etal. Late-Paleoproterozoic tectonothermal events of the metamorphic basement in Alxa area: Evidence from geochronology[J]. Acta Petrologica Sinica, 2010, 26(4): 1159-1170. (in Chinese)
[56] 彭润民,翟裕生,王建平,等.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报,2010,55(26):2611-2620. Peng R M, Zhai Y S, Wang J P,etal. Discovery of Neoproterozoic acid volcanic rock in the western section of Langshan, Inner Mongolia, and its geological significance[J]. Chinese Science Bulletin, 2010, 55(26): 2611-2620. (in Chinese)
[57] Dan W, Li X H, Guo J H,etal. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China: Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research, 2012, 21: 838-864.
[58] 梅华林,于海峰,陆松年,等.甘肃敦煌太古宙英云闪长岩:单颗粒错石U-Pb年龄和Nd同位素[J].前寒武纪研究进展,1998,21(2):41-45. Mei H L, Yu H F, Lu S N,etal. Archean tonalite in the Dunhuang, Gansu Province: Age from the U-Pb single zircon and Nd isotope[J]. Progress in Precambrian Research, 1998, 21(2): 41-45. (in Chinese)
[59] 张志诚,郭召杰,邹冠群,等.甘肃敦煌党河水库TTG地球化学特征、锆石SHRIMP U-Pb定年及其构造意义[J].岩石学报,2009,25(3):495-505. Zhang Z C, Guo Z J, Zou G Q,etal. Geochemical characteristics and SHRIMP U-Pb age of zircons from the Danghe reservoir in Dunhuang, Gansu Province, and its significations[J]. Acta Petrologica Sinica, 2009, 25(3): 495-505. (in Chinese)
[60] 孟繁聪,张建新,相振群,等.塔里木盆地东北缘敦煌群的形成和演化:锆石U-Pb年代学和Lu-Hf同位素证据[J].岩石学报,2011,27(1):59-76. Meng F C, Zhang J X, Xiang Z Q,etal. Evolution and formation of the Dunhuang Group in NE Tarim Basin, NW China: Evidence from detrital-zircon geochronology and Hf isotope[J]. Acta Petrologica Sinica, 2011, 27(1): 59-76. (in Chinese)
[61] 赵燕,第五春荣,孙勇,等.甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义[J].岩石学报,2013,29(5):1698-1712. Zhao Y, Diwu C R, Sun Y,etal. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province[J]. Acta Petrologica Sinica, 2013, 29(5): 1698-1712. (in Chinese)
[62] Zhang J X, Yu S Y, Gong J H,etal. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U-Pb dating and Hf isotopic analyses[J]. Precambrian Research, 2013, 226: 21-42.
Provenance analysis of Paleogene in the Jiuxi basin on eastern Altyn Tagh fault and its implication
DENG Bin1, RAN Bo1, YE Yuehao1, WANG Zijian1, WANG Chengshan2,ZHU Lidong1, TIAN Qing1, YUE Yahui3
1.StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,ChengduUniversityofTechnology,Chengdu610059,China; 2.StateKeyLaboratoryofBiogeologyandEnvironmentalGeology,SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China; 3.KeyLaboratoryofContinentalCollisionandPlateauUplift,InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing100101,China
Sedimentology and geochronology of Paleogene sequences (including the Huoshaogou and Baiyanghe Formations) in the Hongliuxia section of Jiuxi basin are studied so as to explore the relation between the Paleogene sediments with left strike slip Altyn Tagh fault. It shows that the conglomerates in the formations are mainly composed of low-middle grade metamorphic rocks and sedimentary rocks in the Huoshaogou Formation, and of magmatic rocks in the Baiyanghe Formation. Study of these conglomerates reveals that the main paleocurrents are west and northwest direction. The sandstones from the Huoshaogou and Baiyanghe Formations belong to the recycled orogeny environment based on the Q-F-L diagram. Detrital zircons of the four Eocene sandstones obtained two Precambrian characteristic age populations, Neoproterozoic and Mesoproterozoic. Contrasting with periphery provenance sources, it is showed that the provenance of Huoshaogou Formation was mainly from the Altyn Tagh terrane. On the basis of geochronology data, along with the regional stratigraphic and paleocurrent studies, it is considered that the Altyn Tagh terrane is departed from Jiuxi basin after Oligocene, and the maximum left strike slip for Altyn Tagh fault is over 450 km.
Altyn Tagh fault; Jiuxi basin; Altyn Tagh terrane; provenance analysis; strike-slip
10.3969/j.issn.1671-9727.2017.03.04
1671-9727(2017)03-0305-13
2017-01-13。
国家自然科学基金项目(41102064, 41230313); 教育部新教师基金项目(20105122120013); 四川省教育厅重点项目(09ZA005); The 111 Project of China Grant(Project B07011)。
邓斌(1957-),男,讲师,研究方向:构造地质, E-mail: 740640938@qq.com。
P588.21
A