APP下载

物联网下人工神经网络前馈LS—SVM研究

2017-06-05侯义斌王进

电脑知识与技术 2017年10期
关键词:数据模型物联网

侯义斌 王进

摘要:物联网包括互联网技术。研究物联网下人工神经网络前馈LS-SVM,研究的目的主要是建立精确的LS-SVM数据评估模型,研究方法主要是采用SVM基础之上加上Ls也就是最小二乘的方法,研究结果是建立LS-SVM的数据模型,研究结论是这种LS-SVM模型比其他算法模型精确效果好。

关键词:物联网;LS-SVM;数据模型

中图分类号:TP393

文献标识码:A

文章编号:1009-3044(2017)10-0145-02

1.引言

前饋神经网络(feedforwardneuralnetwork),简称前馈网络,是人工神经网络的一种。

2.概念相关概述

2.1前馈人工神经网络现实基础模型

首先,生物神经元模型。人的大脑中有众多神经元,而神经元之间需要神经突触连接,进而构成了复杂有序的神经网络。而神经元主要由树突、轴突和细胞体组成。一个神经元有一个细胞体和轴突,但是却有很多树突。树突是神经元的输入端,用于接受信息,并向细胞体财团对信息。而细胞体是神经元的信息处理中心,能够对信号进行处理。轴突相当于信息输出端口,负责向下一个神经元传递信息;其次,人工神经元。人工神经元的信息处理能力十分有限,但是,由众多人工神经元构成的神经网络系统庞大,具有巨大的潜力,能够解决复杂问题。人工神经网络与生物神经网络具有相似之处,人工神经网络能够从环境中获取知识,并存储信息。前馈人工神经网络主要包括隐含层、输入层和输出层。在前馈人工神经网络中,神经元将信号进行非线性转换之后,将信号传递给下一层,信息传播是单向的。并且,前馈人工神经网络是人们应用最多的网络模型,常见的有BP神经网络、单层感知器、RBF神经网络等模型。

2.2 LS-SVM相关概述

支撑向量机是一种基于统计学习理论的机器学习方法,能够根据样本信息进行非现象映射,解回归问题的高度非现象问题。并且,支撑向量机在解决非线性、局部极小点方问题上有很大的优势。LS-SVM也叫最小二乘支撑向量机,是支撑向量机的一种,遵循支撑向量机算法的结构风险最小化的原则,能够将支撑向量机算法中的不等式约束改为等式约束,进而将二次问题转换为线性方程问题,大大降低了计算的复杂性。并且,LS-SVM在运算速度上远远高于支持向量机。但是,LS-SVM也存在一定的缺点,在计算的过程中,LS-SVM的忽视了全局最优,只能实现局部最优。并且,LS-SVM在处理噪声污染严重的样本时,会将所有的干扰信息都拟合到模型系统中,导致模型的鲁棒性降低。另外,LS-SVM的在线建模算法、特征提取方法以及LS-SVM的支持向量稀疏性都有待改进。

2.3物联网下人工神经网络前馈LS-SVM研究的意义

物联网是互联网技术的发展趋势,为前馈人工神经网络的发展与LS-SVM研究提供了技术保障,在物联网背景下,研究人工神经网络前馈LS-SVM不仅能够创新人工神经网络的计算方法,完善人工神经网络在现实生活中的应用,而且对人们生活的自动化和智能化发展有着重要意义。另外,物联网为人们对LS-SVM的研究提供了条件,在物联网环境下,人们能够运用信息技术深化最小二乘支撑向量机研究,不断提高LS-SVM回归模型的鲁棒性,改进LS-SVM的特征提取方法和在线建模算法,完善计算机学习方法,提升计算机的运算速度。3基于LS—SVM的丢包数据模型

在选择的参数的基础上,运用IS-SVM方法,建立评估模型。本文选用LS-SVM回归方法的原因,SVM优于神经网络的方法主要是以下几点:

首先,了解数据挖掘,数据挖掘前景广阔,SVM是数据挖掘中的新方法。其次,选择合适的数据分析方法根据数据集的大小和特征。小样本训练适合SVM,样本大情况的训练适宜神经网络,这里用SVM。

然后,就是文献使用SVM和PCA建立跨层的评估QOE,实验结果表明主观MOS评分和此评价结果具有很好的一致性。

最后,本文采用SVM基础上的进一步拔高,LS-SVM,比SVM运行快,精确度高。srcl3_hrcl_525.yuv实验素材的特征是具有高清性质。525序列60HZ,帧大小为1440x486字节/帧,625序列50HZ,大小同上。YUV格式是422格式即4:2:2格式的。

时域复杂度的模型如下,视频的时域复杂度σ;编码量化参数是Q;编码速率为R;待定模型的参数为a和b。σ=Q(aR+b)。通过大量的实验和理论分析,得到模型的参数:a=l 260,b=0.003。其中,编码速率和帧率可以看作是视频的固有属性。高清视频编码速率R是512kb/s,最大帧速率为30000/1001=29.97幅,秒。量化参数是根据实验的具体情况确定的。计算σ的值如下所示:当量化参数为31时,σ=19998720.1,当量化参数为10时,σ=6451200.03,当量化参数为5时,σ=3225600.02,当量化参数为62时,σ=39997440.2,当量化参数为100时,σ=64512000.3,当量化参数为200时,σ=129024001,当量化参数为255时,σ=164505601。

对于srcl3网络环境建立考虑网络丢包的视频质量无参评估模型使用LS-SVM方法。

(1)输入x的值。XI是量化参数,X2封包遗失率,X3单工链路速度,X4双工链路速度,X5视频的时域复杂度。等权的参数。

LS-SVM要求调用的参数只有两个gam和sig2并且他们是LS-SVM的参数,其中决定适应误差的最小化和平滑程度的正则化参数是gam,RBF函数的参数是sig2。Type有两种类型,一种是elassfieation用于分类的,一种是function estimation用于函数回归的。

4.机器学习和物联网的结合

物联网中也用到人工智能,人工智能中有机器学习,机器学习中有神经网络。机器学习是人工智能研究的核心问题之一,也是当前人工智能研究的一个热门方向。

5.总结和展望

人工神经网络(Artifieial neural network)是一种被广泛使用的基础模型,其灵感来自于生物的神经网络,用于对某事物或某指标进行评估或预测。BP神经网络还可以进行人体面部识别、车辆牌照识别、数据预测、机器学习等方面的研究。

猜你喜欢

数据模型物联网
面板数据模型截面相关检验方法综述
加热炉炉内跟踪数据模型优化
中国或成“物联网”领军者
面向集成管理的出版原图数据模型
一种顾及级联时空变化描述的土地利用变更数据模型