APP下载

秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响

2017-06-05李晓峰程金秋陈梦云任红茹张洪程霍中洋戴其根魏海燕郭保卫

作物学报 2017年6期
关键词:全量穗肥氮素

李晓峰 程金秋 梁 健 陈梦云 任红茹 张洪程 霍中洋 戴其根 许 轲 魏海燕 郭保卫



秸秆全量还田与氮肥运筹对机插粳稻产量及氮素吸收利用的影响

李晓峰 程金秋 梁 健 陈梦云 任红茹 张洪程 霍中洋*戴其根 许 轲 魏海燕 郭保卫

扬州大学农业部长江流域稻作技术创新中心 / 扬州大学江苏省作物遗传生理国家重点实验室培育点, 江苏扬州 225009

以常规粳稻南粳5055、南粳46为材料, 在总施纯氮量为300 kghm–2条件下, 设置9∶1、8∶2、7∶3、6∶4、5∶5、4∶6共6种基蘖肥与穗肥比例, 探讨秸秆全量还田条件下不同氮肥运筹对机插粳稻产量及氮素吸收利用特征的影响。结果表明, 与秸秆不还田相比, 秸秆全量还田具有显著的增产效应, 南粳5055、南粳46平均增产5.04%、4.64%; 随着基蘖氮肥占总施氮量比例的下降, 秸秆全量还田机插粳稻产量呈先增后减的趋势, 基蘖氮肥与穗氮肥比例为7∶3时, 水稻产量最高。相同氮肥运筹模式下, 秸秆全量还田处理水稻拔节期及移栽至拔节阶段的群体干物质积累量均低于秸秆不还田处理, 抽穗期、成熟期及拔节至抽穗、抽穗至成熟阶段的群体干物质积累量则高于秸秆不还田处理。氮肥运筹间表现为随基蘖氮肥占总施氮量比例的下降, 拔节期及移栽至拔节阶段的群体干物质积累量下降, 而抽穗期、成熟期及拔节至抽穗、抽穗至成熟阶段的群体干物质积累量呈现先增后减的趋势。当基蘖氮肥与穗氮肥比例为7∶3时, 秸秆全量还田条件下的水稻群体干物质积累量最高, 经济系数也最高。秸秆全量还田水稻拔节前的氮素积累量低于秸秆不还田处理, 拔节至抽穗、抽穗至成熟阶段的氮素积累量则高于秸秆不还田处理, 秸秆全量还田处理的氮肥表观利用率、氮肥农学利用率和氮肥偏生产力均高于秸秆不还田处理。不同氮肥运筹间表现为随基蘖肥占总施氮量比例的下降, 氮肥表观利用率、氮肥农学利用率、氮肥生理利用率及氮肥偏生产力均呈现先增后减的趋势, 当基蘖氮肥与穗氮肥运筹比例为7∶3时最高。

秸秆全量还田; 氮肥运筹; 机插粳稻; 产量; 氮素吸收; 氮肥利用率

我国秸秆资源丰富, 据相关统计, 每年产生作物秸秆约7.95亿吨, 其中小麦秸秆约占禾谷类作物秸秆总量的27.7%[1]。秸秆是一种重要的可再生有机资源, 含有丰富的碳、氮、磷、钾以及微量元素等养分[2-4]。秸秆还田在改善土壤结构和物理性状, 提高土壤肥力的同时也有效地提高土壤对氮素的吸收利用率, 从而减小了氮素施用过程中对环境的潜在威胁[5]。大量研究表明, 秸秆还田需要配合氮肥运筹从而避免微生物在分解秸秆过程中与水稻竞争土壤中的氮素[6-8], 随着微生物的分解, 秸秆还田中的氮素会缓慢释放出来供水稻吸收利用[9]。李勇等[10]研究认为秸秆全量还田条件下与传统氮肥运筹模式(基蘖肥∶穗肥=5∶5)相比优化后的氮肥运筹模式(基蘖肥∶穗肥=6.5∶3.5), 能提高水稻产量和氮肥利用率。胡雅杰等[11]研究认为较常规氮肥运筹(基蘖肥∶穗肥=6∶4), 适当提高基肥比例(基蘖肥∶穗肥=7∶3)可提高秸秆全量还田条件下机插超级粳稻产量、干物质积累量、氮素积累量和氮肥利用率。李录久等[12]研究表明, 在秸秆还田和不还田条件下分别设置3种氮肥运筹比例, 以基蘖肥与穗肥比例为8∶2运筹方式较为适宜, 水稻产量最高, 籽粒含氮量升高、氮吸收量增多, 氮肥利用率提高。严奉君等[13]研究认为秸秆覆盖条件下, 氮肥运筹以基肥∶蘖肥∶穗肥为3∶3∶4时的水稻根系生长旺盛, 物质生产能力强, 氮肥利用率最高。陈夕进等[14]研究认为秸秆还田后, 适宜的基蘖肥与穗肥比例为8∶2; 秸秆不还田处理, 适宜的基蘖肥与穗肥比例为7∶3。由此可见, 前人关于秸秆还田对水稻生长影响的结果不尽一致, 而且以往研究的氮肥运筹设计偏少, 仍具有一定的经验性, 缺乏系统性, 同时研究重点大多集中于秸秆还田条件下的氮肥运筹效果, 其与秸秆不还田条件下的氮肥运筹效果之间缺乏比较研究, 特别是对秸秆还田和秸秆不还田各自的最佳氮肥运筹模式下水稻产量和氮素吸收利用的差异缺乏系统比较评价。本试验采用毯苗机插方式, 设置6种基蘖肥与穗肥运筹比例, 系统研究分析秸秆还田和秸秆不还田条件下的氮肥运筹效应及其互作关系。试图探明秸秆全量还田机插稻高产高效栽培最佳氮肥运筹模式, 以期为秸秆全量还田机插稻高产施肥提供理论依据和技术支撑。

1 材料与方法

1.1 试验地点与供试品种

试验在扬州大学农学院校外基地江苏省常熟市农业综合展示基地(31°41′15″N, 120°40′16″E)进行。前茬为小麦, 土壤质地属黏土, 地力中等偏上, 土壤含有机质21.50 g kg–1、全氮1.88 g kg–1、速效磷15.90 mg kg–1、速效钾98.70 mg kg–1。

供试品种为常规早熟晚粳稻南粳46和南粳5055。

1.2 试验设计

试验以秸秆还田与不还田为主区, 氮肥运筹为裂区, 品种为裂-裂区。其中, 秸秆还田处理为, 小麦收获时启动切碎装置将秸秆全部还田, 秸秆还田量6.0 t hm–2; 秸秆不还田处理为, 小麦机械收获, 留茬高度5 cm, 粉碎秸秆用人工移除至田外。设计6种基蘖肥与穗肥比例, 分别为9∶1、8∶2、7∶3、6∶4、5∶5、4∶6。同时设置不施氮处理(CK)。共28个处理, 重复3次, 计84个小区, 小区面积15 m2, 每小区之间筑35~40 cm土埂并用塑料薄膜包埂, 保证单独排灌。

施氮区每公顷施纯氮300 kg, 基蘖肥中的基肥与分蘖肥比例均为5∶5, 基肥在移栽前1 d施入, 分蘖肥分别在移栽后二叶期和三叶期各施50%, 穗肥分别在倒四叶、倒二叶各施60%、40%。N∶P∶K=1.0∶0.5∶0.8, 其中磷肥一次性基施, 钾肥分基肥和拔节肥两次施用, 各施50%。不施氮区的磷、钾肥用量及施用方法与施氮区一致。氮、磷、钾肥分别以尿素(含N 46.4%)、过磷酸钙(含P2O512.5%)、氯化钾(含K2O 57%)折算施用。

于2014年5月25日播种, 6月10日移栽; 2015年5月26日播种, 6月12日移栽。以毯苗机插软盘旱育秧, 每盘播干种120 g。栽插行株距为30.0 cm×11.7 cm, 每穴4株, 栽插后及时查漏补缺。水分管理为, 薄水移栽活棵并露田1~2次, 分蘖期浅水勤灌, 至有效分蘖临界叶龄期前1个叶龄(N-n-1)自然断水搁田, 并采取轻搁、多搁的方法; 拔节后实行湿润灌溉, 直至收获前5~7 d停止灌溉。病、虫、草害防治按当地大面积生产统一实施。

1.3 测定内容与方法

1.3.1 茎蘖动态 从每小区选取2个观察点, 每点选取连续10穴定期调查, 每5 d调查一次茎蘖数, 直到抽穗期。

1.3.2 干物质量 于分蘖中期、拔节期、抽穗期、成熟期, 按每小区茎蘖数的平均数取代表性植株3穴, 于105℃下杀青30 min, 75℃下烘干至恒重, 测定植株干物质重。

1.3.3 氮素积累量 将植株干样粉碎后用H2SO4-H2O2消化, 以半微量凯氏定氮法测定各部分氮含量。

1.3.4 产量 成熟期普查每小区50穴, 计算有效穗数, 取5穴调查每穗粒数、结实率, 以1000粒实粒样本(干种子)称重, 重复3次(误差不超过0.05 g)求取千粒重。成熟期从各小区割取100穴, 去杂, 测定水分, 核收实产。

1.4 数据计算与统计分析

氮肥表观利用率(%) = (施氮区植株氮素积累量−空白区植株氮素积累量)/施氮量×100

氮肥农学利用率(kg kg–1) = (施氮区水稻产量−空白区水稻产量)/施氮量

氮肥生理利用率(kg kg–1) = (施氮区水稻产量−空白区水稻产量)/(施氮区植株氮素积累量−空白区植株氮素积累量)

百千克籽粒需氮量(kg) = (植株氮素积累量/产量)×100

收获指数(%) = (群体单位面积经济产量/群体单位面积地上部总干物质积累量)×100

采用Microsoft Excel 2003录入和计算数据, 运用DPS软件统计分析。

由于2年试验结果的规律基本一致, 本文主要取2015年的试验数据。

2 结果与分析

2.1 产量及其构成因素

方差分析表明(表1和表2), 秸秆还田(A)、氮肥运筹(B)及其互作效应(A×B)均达极显著水平, 不同处理年度间(Y)差异也极显著, 而年度(Y)与秸秆还田(A)、氮肥运筹比例(B)处理的互作效应均不显著。

进一步分析可知(表3和表4), 南粳5055、南粳46秸秆全量还田条件下各处理的产量分别比秸秆不还田处理高1.44%~12.14%、1.76%~10.70%, 平均高5.04%、4.64%; 不同氮肥运筹间均表现为随基蘖肥占总施氮量比例的下降, 产量呈先增后减趋势, 其中在秸秆全量还田条件下, 以基蘖肥与穗肥比例7∶3处理的产量最高, 在秸秆不还田条件下, 以基蘖肥与穗肥比例6∶4处理的产量最高, 且秸秆全量还田条件下最佳氮肥运筹处理(7∶3)的产量显著高于秸秆不还田条件下最佳氮肥运筹处理(6∶4), 平均产量分别高7.70% (南粳5055)、6.25% (南粳46)。说明, 秸秆全量还田配以合理的氮肥运筹更利于提高水稻产量。不同处理产量构成因素则表现为, 与秸秆不还田相比, 秸秆全量还田处理的穗数减少, 而每穗粒数、结实率和千粒重均有所增加。不同氮肥运筹间, 秸秆全量还田和不还田处理的穗数均表现为随基蘖肥占总施氮量比例的减少而降低, 但均显著高于不施氮处理, 每穗粒数、结实率和千粒重呈先增后减趋势。群体颖花量则表现为秸秆全量还田显著高于秸秆不还田, 随着基蘖肥与穗肥比例的下降, 群体颖花量表现为先增加后减少的趋势, 其中秸秆全量还田时以7∶3处理最高, 秸秆不还田时则以6∶4处理最高, 且秸秆全量还田条件下的最高群体颖花量(7∶3处理)显著高于秸秆不还田条件下的最高群体颖花量(6∶4处理), 分别高5.13% (南粳5055)、5.09% (南粳46)。因此, 在秸秆全量还田条件下, 适当增施氮肥或提高基蘖氮肥比例, 能有效地降低秸秆还田后的抑制效应, 促进分蘖早发, 稳定穗数, 增加穗粒数, 提高群体总颖花量, 实现高产增产。

表1 秸秆还田与氮肥运筹条件下南粳5055产量的方差分析

*,**分别表示在0.05和0.01水平上差异显著, ns表示差异不显著(>0.05)

*and**mean significance at the 0.05 and 0.01 probability levels, respectively. ns: not significant. Y: year; A: straw treatment; B: nitrogen application practice.

表2 秸秆还田与氮肥运筹条件下南粳46产量的方差分析

*,**分别表示在0.05和0.01水平差异显著, ns表示差异不显著(>0.05)。

*and**mean significance at the 0.05 and 0.01 probability levels, respectively. ns: not significant. Y: year; A: straw treatment; B: nitrogen application practice.

2.2 群体干物质积累

由表5可知, 秸秆全量还田对不同生育时期群体干物质积累量的影响不同。在拔节期, 秸秆全量还田处理的群体干物质积累量均低于相同氮肥运筹秸秆不还田处理, 而在抽穗期、成熟期则均高于秸秆不还田处理。其中南粳5055和南粳46拔节期秸秆全量还田处理比秸秆不还田处理平均分别低4.86%、5.31%, 在抽穗期、成熟期则分别高4.42%、2.73%和5.84%、4.48%。在拔节期, 不同氮肥运筹间均表现为随基蘖肥占总施氮量比例的下降, 群体干物质积累量呈递减趋势; 而在抽穗期与成熟期, 不同氮肥运筹间均表现为随基蘖肥占总施氮量比例的下降, 群体干物质积累量呈先增后减趋势, 其中在秸秆全量还田与不还田条件下分别以基蘖肥与穗肥比例为7∶3、6∶4处理的群体干物质积累量最高, 且秸秆全量还田最佳氮肥运筹处理(7∶3)成熟期干物质积累量显著高于秸秆不还田最佳氮肥运筹处理(6∶4), 分别高10.33% (南粳5055)、6.03% (南粳46)。收获指数也表现为秸秆全量还田处理较秸秆不还田高, 平均提高0.53 (南粳5055)和0.63 (南粳46)。说明秸秆腐解一定程度上抑制了水稻生育前期的生长, 但秸秆分解释放的氮素显著促进了中后期群体生长, 这可能是水稻产量及收获指数提高的主要原因。

表3 秸秆全量还田和秸秆不还田下氮肥运筹对机插粳稻产量及其构成因素的影响(2014)

同一品种同列数据后不同小、大写字母分别表示处理间差异达0.05和0.01显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

Values followed by different lowercase and capital letters in a column are significantly different at the 0.05 and 0.01 probability levels respectively. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

表4 秸秆全量还田和秸秆不还田下氮肥运筹对机插粳稻产量及构成因素的影响(2015)

同一品种同列数据后不同小、大写字母分别表示处理间差异达0.05和0.01显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

Values followed by different lowercase and capital letters in a column are significantly different at the 0.05 and 0.01 probability levels respectively. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

2.3 阶段干物质积累及其比例

由表6可知, 在移栽至拔节阶段, 秸秆全量还田处理的群体阶段干物质积累量均低于相同氮肥运筹下秸秆不还田处理, 而在拔节至抽穗、抽穗至成熟阶段则均高于秸秆不还田处理。其中南粳5055和南粳46秸秆全量还田处理移栽至拔节阶段干物质积累量比秸秆不还田处理分别低4.89%、5.33%, 在拔节至抽穗、抽穗至成熟阶段则分别高10.27%、7.84%和8.23%、7.49%。不同氮肥运筹群体阶段干物质积累量在移栽至拔节阶段均表现为随基蘖肥占总施氮量比例的下降而下降, 而在拔节至抽穗、抽穗至成熟阶段的群体干物质积累量则均表现为随基蘖肥占总施氮量比例的下降呈先增后减趋势。其中秸秆全量还田条件下抽穗至成熟阶段的群体干物质积累量最高的为7∶3处理, 而在秸秆不还田条件下为6∶4处理, 且秸秆全量还田条件下水稻群体干物质积累量最高的处理(7∶3)显著高于秸秆不还田条件下的群体干物质积累量最高的处理(6∶4), 南粳5055、南粳46分别高12.80%、9.28%。

表5 氮肥运筹对机插粳稻干物质积累特征的影响

同一品种同列数据后不同小写字母表示处理间差异达0.05显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

Values followed by different lowercase letters in a column are significantly different at the 0.05 probability level. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

2.4 各生育阶段氮素积累量及其比例

由表7可知, 在拔节前, 秸秆全量还田处理的氮素积累量均低于相同氮肥运筹秸秆不还田处理, 而在拔节至抽穗、抽穗至成熟阶段则均高于秸秆不还田处理。其中南粳5055和南粳46拔节期秸秆全量还田处理比秸秆不还田处理平均低3.38%、5.85%, 在拔节至抽穗、抽穗至成熟阶段则分别高17.30%、19.12%和12.05%、7.73%。不同氮肥运筹处理的氮素积累量及其占总吸氮量比例在拔节前均表现为随基蘖肥占总施氮量比例的下降而下降; 拔节至抽穗阶段的氮素积累量表现为随基蘖肥占总施氮量比例的下降呈先增后减趋势, 而阶段氮素积累量占总吸氮量的比例则随基蘖肥占总施氮量比例的下降呈递增趋势; 抽穗至成熟阶段的氮素积累量及其占总吸氮量的比例均表现为随基蘖肥占总施氮量比例的下降呈先增后减的趋势。其中在秸秆全量还田条件下水稻抽穗至成熟阶段的氮素积累量最高的为7∶3处理, 而在秸秆不还田条件下为6∶4处理, 且秸秆全量还田条件下7∶3处理的阶段氮素积累量显著高于秸秆不还田条件下的6∶4处理, 分别高12.68% (南粳5055)、6.69% (南粳46)。

表6 氮肥运筹对机插粳稻各生育期干物质积累及其比例的影响

同一品种同列数据后不同小写字母表示处理间差异达0.05显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

Values followed by different lowercase letters in a column are significantly different at the 0.05 probability level. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

表7 氮肥运筹对机插粳稻各生育阶段氮素吸收积累的影响

同一品种同列数据后不同小写字母表示处理间差异达0.05显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

NA: nitrogen accumulation. Values followed by different lowercase letters in a column are significantly different at the 0.05 probability level. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

2.5 氮素吸收利用率

由表8可知, 秸秆全量还田处理的氮肥表观利用率、氮肥农学利用率和氮肥偏生产力均高于相同氮肥运筹下秸秆不还田处理。其中南粳5055和南粳46秸秆全量还田处理比秸秆不还田处理的氮肥表观利用率、氮肥农学利用率、氮肥偏生产力平均高6.43、5.77、2.29和1.91、1.76、1.30。而秸秆全量还田处理的氮肥生理利用率与百千克籽粒吸氮量较秸秆不还田处理无规律性差异。不同氮肥运筹间均表现为随基蘖肥占总施氮量比例的下降, 氮肥表观利用率、氮肥农学利用率、氮肥生理利用率及氮肥偏生产力均呈先增后减的趋势, 其中在秸秆全量还田条件下以基蘖肥与穗肥比例为7∶3处理最高, 而在秸秆不还田条件下以基蘖肥与穗肥比例为6∶4 处理最高, 且秸秆全量还田条件下基蘖肥与穗肥比例为7∶3处理的氮素总积累量、氮肥表观利用率、氮肥农学利用率、氮肥偏生产力也均明显高于秸秆不还田条件下6∶4处理, 分别高14.08 kg hm–2(南粳5055)、12.88 kg hm–2(南粳46)、6.84%、6.19%, 2.36 kg kg–1、2.16 kg kg–1, 3.55 kg kg–1、2.11 kg kg–1。

表8 氮肥运筹对机插粳稻的氮素利用效率的影响

同一品种同列数据后不同小写字母表示处理间差异达0.05显著水平。表中“处理”指基蘖肥与穗肥比例, “CK”为对照。

NA: nitrogen accumulation; ANUE: apparent nitrogen use efficiency; PNUE: physiological nitrogen use efficiency; AE: agronomic nitrogen use efficiency; PFP: partial factor productivity of applied N; NRG: nitrogen requirement for 100 kg grains. Values followed by different lowercase letters in a column are significantly different at the 0.05 probability level. The “Treatment” in table refers to the ratio basal-tillering-fertilizer to panicle-fertilizer; “CK” refers to control.

3 讨论

3.1 秸秆全量还田与氮肥运筹对机插粳稻产量的影响

关于秸秆还田对水稻产量的影响, 前人进行了大量研究, 但研究结果不尽一致。袁玲等[15]、叶文培等[16]和Xu等[17]认为, 秸秆还田能提高水稻产量5%~10%。陈新红等[18]和徐国伟等[19]认为秸秆还田对水稻产量的影响不显著。关于氮肥运筹对水稻产量的影响, 胡雅杰等[11]研究认为, 基蘖氮肥∶穗氮肥=7∶3时可显著增加穗数而提高机插超级粳稻产量; 王建明等[20]研究认为, 基蘖肥∶穗肥比例为7∶3~8∶2时, 可以保证足穗与高产。本研究则认为, 秸秆全量还田具有一定的增产效应, 但增产是否显著与基蘖肥与穗肥的氮肥运筹比例关系密切, 当基蘖肥与穗肥的氮肥运筹比例为7∶3时, 南粳5055、南粳46的增产幅度最大, 分别达12.14%、10.70%, 并极显著高于其他处理(包括显著高于秸秆不还田最佳氮肥运筹处理即6∶4处理的产量, 分别高7.70%、6.25%); 但当氮肥运筹比例为6∶4、5∶5、4∶6时, 增产效应则不显著。这可能是由于水稻生育前期秸秆腐烂与水稻生长争氮, 如施氮比例过小, 则易使水稻氮素供应不足并抑制分蘖, 影响中后期生长与高产, 而适当提高前期氮肥施用比例及施用量, 能较好协调秸秆腐烂与水稻生长争氮, 确保水稻分蘖早发稳发, 实现预期穗数, 并协调足穗与大穗的矛盾, 显著增加每穗粒数、结实率和千粒重, 从而获得高产。但本试验是在秸秆还田量为6.0 t hm–2的条件下进行的, 秸秆还田量增加或者减少, 以及土壤养分背景值是否会影响氮肥运筹对秸秆还田水稻产量的效应, 这方面仍有待进一步深入研究。

3.2 秸秆全量还田与氮肥运筹对机插粳稻干物质积累的影响

朱斌等[21]研究表明, 秸秆还田后各处理的群体干物质积累量在水稻生长前期均小于秸秆不还田处理; 在水稻生长中后期, 秸秆还田对水稻生长有促进作用, 表现为群体干物质积累量的显著增加。刘世平等[22]研究认为, 作物秸秆的腐熟速率均为“前快后慢”的趋势, 所以, 经常在水稻生育前期造成对干物质积累等的抑制[23]。本研究结果认为, 秸秆全量还田对不同生育时期群体干物质积累的影响不同。在拔节期, 秸秆全量还田各处理的群体干物质积累量小于秸秆不还田处理, 这可能主要与秸秆前期快速腐烂抑制干物质积累有关; 在抽穗期和成熟期, 秸秆全量还田各处理的群体干物质积累量明显高于秸秆不还田处理, 且群体干物质积累量增加幅度及显著性与氮肥运筹有密切关系, 前期施肥比例过小, 造成施氮量低, 加之秸秆的“争氮”, 容易出现供氮不足的现象, 造成地上部分群体过小, 从而减少了各生育期干物质的积累量, 但前期施氮比例过大, 造成施氮量过大, 前中期群体过旺, 无效分蘖过多, 群体质量下降, 产量不高不稳。在秸秆全量还田条件下配以基蘖氮肥:穗氮肥比例7∶3, 能有效地平衡前期与后期群体生长, 显著提高水稻中后期的群体干物质积累量, 确保穗、粒、重的协调生长, 实现高产。

3.3 秸秆全量还田与氮肥运筹对机插粳稻氮素吸收利用的影响

秸秆还田能否代替一定的氮肥用量与提高养分利用率一直为许多学者所关心[24-25]。Van Asten等[25]认为, 秸秆还田能够通过自身的氮素分解固氮与增加外源氮素的固定量, 从而增加氮肥的利用率。陆强等[26]研究表明在稻麦轮作系统中秸秆还田配施化肥相比较秸秆不还田水稻氮肥表观利用率和农学利用率均显著提高。李录久等[12]和严奉君等[13]研究表明, 小麦秸秆还田下水稻氮素农学利用率和氮素生理利用率均比无秸秆覆盖处理下有所提高。前人关于氮肥吸收利用的研究大多集中于较高产的氮肥运筹比例下, 而本试验在6种常规的氮肥运筹比例下均表现为秸秆全量还田处理提高了氮素总积累量、氮肥表观利用率、氮肥农学利用率和氮肥偏生产力, 与前人研究基本一致。但本研究还发现, 秸秆全量还田水稻拔节前的氮素积累量低于秸秆不还田处理, 拔节至抽穗、抽穗至成熟阶段的氮素积累量则高于秸秆不还田处理。造成这样的原因主要是秸秆还田降低水稻前期土壤有效氮含量, 减少水稻前期吸氮量, 而提高水稻中后期土壤养分含量, 促进水稻生育中后期氮素吸收积累[27]。进一步发现, 氮素吸收利用率的变化幅度及显著性差异与氮肥运筹密切相关, 在氮肥运筹7∶3情况下, 秸秆还田处理的氮素积累总量、氮肥表观利用率、氮肥农学利用率、氮肥偏生产力提高幅度最大, 分别为21.08 kg hm–2(南粳5055)、18.56 kg hm–2, 9.10、8.09, 4.75 kg kg–1、3.73 kg kg–1, 4.21 kg kg–1、3.13 kg kg–1, 且显著高于其他处理; 氮肥生理利用率与百千克籽粒吸氮量变化差异小, 但均以秸秆全量还田下基蘖肥比穗肥为7∶3时氮肥生理利用率最高、百千克籽粒吸氮量最小。王建明等[20]研究认为, 秸秆还田条件下水稻的氮素吸收量随基蘖肥与穗肥比例的提高而提高, 而本试验研究则认为, 氮素总吸收量随基蘖肥与穗肥比例的提高而呈先增加后下降的趋势, 这可能与氮素施用总量或土壤肥力基础有关。因此, 秸秆全量还田条件下适当提高基蘖肥比例, 能降低水稻生育前期因秸秆分解争氮的胁迫, 利于协调全生育期氮素吸收利用, 提高水稻成熟期氮素积累量和氮素利用率。

4 结论

秸秆全量还田、氮肥运筹及其互作对水稻产量和氮肥吸收利用具有显著影响。与秸秆不还田相比, 秸秆全量还田水稻拔节期、移栽至拔节阶段的群体干物质积累量、氮素积累量均低, 抽穗期、成熟期、拔节至抽穗、抽穗至成熟阶段的群体干物质积累量和拔节至抽穗、抽穗至成熟阶段的氮素积累量、氮肥表观利用率、氮肥农学利用率、氮肥偏生产力高, 水稻产量提高1.44%~12.14% (南粳5055)、1.76%~10.70% (南粳46), 平均增产5.04% (南粳5055)、4.64% (南粳46)。基蘖氮肥与穗氮肥为7∶3时, 秸秆全量还田水稻抽穗期、成熟期、拔节至抽穗、抽穗至成熟阶段的群体干物质积累量、氮肥表观利用率、氮肥农学利用率、氮肥生理利用率、氮肥偏生产力及水稻产量与经济系数最高。秸秆全量还田最佳氮肥运筹处理(7∶3)产量也显著高于秸秆不还田最佳氮肥运筹处理(6∶4)产量, 分别高7.7% (南粳5055)、6.25% (南粳46)。

References

[1] 高利伟, 马林, 张卫峰, 王方浩, 马文奇, 张福锁. 中国作物秸秆养分资源数量估算及其利用状况. 农业工程学报, 2009, 25: 173–179 Gao L W, Ma L, Zhang W F, Wang F H, Ma W Q, Zhang F S. Estimation of nutrient resource quantity of crop straw and its utilization situation in China., 2009, 25: 173–179 (in Chinese with English abstract)

[2] 江永红, 宇振荣, 马永良. 秸秆还田对农田生态系统及作物生长的影响. 土壤通报, 2001, 32: 209–213 Jiang Y H, Yu Z R, Ma Y L. The effect of stubble return on agro-ecological system and crop growth., 2001, 32: 209–213 (in Chinese with English abstract)

[3] 武际, 郭熙盛, 鲁剑巍, 王允青, 许征宇, 张晓玲. 水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响. 植物营养与肥料, 2012, 18: 579–594 Wu J, Guo X S, Lu J W, Wang Y Q, Xu Z Y, Zhang X L. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy-upland rotation system., 2012, 18: 587–594 (in Chinese with English abstract)

[4] 戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26: 272–276 Dai Z G, Lu J W, Li X K, Lu M X, Yang W B, Gao X Z. Nutrient release characteristics of different crop straws manure., 2010, 26: 272–276 (in Chinese with English abstract)

[5] 顾炽明. 施氮对关中灌区秸秆还田小麦生长和秸秆腐解规律的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2013 Gu C M. Effect of Nitrogen Fertilizer Application on Winter Wheat Growth and Law of Maize Straw Decomposition under Maize Straw Returning in Guanzhong Irrigation Area. MS Thesis of Northwest Agriculture and Forestry University, Yangling, China, 2013(in Chinese with English abstract)

[6] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259–273 Zhu Z L, Jin J Y. Fertilizer use and food security in China., 2013, 19: 259–273 (in Chinese with English abstract)

[7] 南雄雄, 田霄鸿, 张琳, 游东海, 吴玉红, 曹玉贤. 小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响. 植物营养与肥料学报, 2010, 16: 626–633 Nan X X, Tian X H, Zhang L, You D H, Wu Y H, Cao Y X. Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents., 2010, 16: 626–633 (in Chinese with English abstract)

[8] 陈海飞, 冯洋, 徐芳森, 蔡红梅, 周卫, 刘芳, 庞再明, 李登荣. 秸秆还田下氮肥管理对中低产田水稻产量和氮素吸收利用影响的研究. 植物营养与肥料学报, 2014, 20: 517–524 Chen H F, Feng Y, Xu F S, Cai H M, Zhou W, Liu F, Pang Z M, Li D R. Effect of nitrogen fertilizer management on rice yield and nitrogen uptake in medium and low yield under the conditions of straw turnover., 2014, 20: 517–524 (in Chinese with English abstract)

[9] 戴志刚, 鲁剑巍, 李小坤, 鲁明星, 杨文兵, 高祥照. 不同作物还田秸秆的养分释放特征试验. 农业工程学报, 2010, 26: 272–276Dai Z G, Lu J W, Li X K, Lu M X, Yang W B, Gao X Z. Nutrient release characteristics of different crop straws manure., 2010, 26: 272–276 (in Chinese with English abstract)

[10] 李勇, 曹红娣, 储亚云, 邓九胜, 朱荣松, 朱彩云, 蒋新华, 白洁瑞. 麦秆还田氮肥运筹对水稻产量及土壤氮素供应的影响. 土壤, 2010, 42: 569–573 Li Y, Cao H D, Chu Y Y, Deng J S, Zhu J S, Zhu C Y, Jiang X H, Bai J R. Effects of nitrogen fertilizer application in wheat straw returned to field on rice yield and soil nitrogen supply., 2010, 42: 569–573 (in Chinese with English abstract)

[11] 胡雅杰, 朱大伟, 邢志鹏, 龚金龙, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 改进施氮运筹对水稻产量和氮素吸收利用的影响. 植物营养与肥料学报, 2015, 21: 12–22 Hu Y J, Zhu D W, Xing Z P, Gong J L, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Modifying nitrogen fertilization ratio to increase the yield and nitrogen uptake of superrice., 2015, 21: 12–22 (in Chinese with English abstract)

[12] 李录久, 王家嘉, 吴萍萍, 黄厚宽, 蒋荫锡. 秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响. 植物营养与肥料学报, 2016, 22: 254–262 Li L J, Wang J J, Wu P P, Huang H K, Jiang Y X. Effect of different nitrogen application on rice yield and N uptake of white soil under wheat straw turover.,2016, 22: 254–262 (in Chinese with English abstract)

[13] 严奉君, 孙永健, 马均, 徐徽, 李玥, 杨志远, 蒋明金, 吕腾飞. 秸秆覆盖与氮肥运筹对杂交稻根系生长及氮素利用的影响. 植物营养与肥料学报, 2015, 21: 23–55 Yan F J, Sun Y J, Ma J, Xu H, Li Y, Yang Z Y, Jiang M J, Lyu T F. Effect of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice., 2015, 21: 23–55 (in Chinese with English abstract)

[14] 陈夕进, 许应国, 朱从海, 吴一梅, 李德山. 氮肥运筹对麦秸全量还田后机插水稻的应用效果. 农机服务, 2011, 28(2): 168–169 Chen X J, Xu Y G, Zhu C H, Wu Y M, Li D S. The application effect of nitrogen fertilizer on machine transplantedrice under total straw returning., 2011, 28(2): 168–169 (in Chinese with English abstract)

[15] 袁玲, 张宣, 杨静, 杨春蕾, 曹小闯, 吴良欢. 不同栽培方式和秸秆还田对水稻产量和营养品质的影响. 作物学报, 2013, 39: 350–359 Yuan L, Zhang X, Yang J, Yang C L, Cao X C, Wu L H. Effects of different cultivation methods and straw incorporation on grain yield and nutrition quality of rice., 2013, 39: 350–359 (in Chinese with English abstract)

[16] 叶文培, 谢小立, 王凯荣, 李志国. 不同时期秸秆还田对水稻生长发育及产量的影响. 中国水稻科学, 2008, 22: 65–70 Ye W P, Xie X L, Wang K R, Li Z G. Effects of rice straw manuring in different periods on growth and yield of rice., 2008, 22: 65–70 (in Chinese with English abstract)

[17] Xu Y Z, Nie L X, Buresh R J, Huang J L, Cui K H, Xu B, Gong W H, Peng S B. Agronomic performance of late-season rice under different tillage, straw, and nitrogen management., 2010, 115: 79–84

[18] 陈新红, 韩正光, 叶玉秀, 张安存, 王哲, 周青. 麦草全量机械还田对机插水稻产量和生长特性的影响. 西北农业学报, 2013,22(8):38–41Chen X H,Han Z G,Ye Y X, Zhang A C, Wang Z, Zhou Q. Effects of wheat-residue application on grain yield and growth characteristics in mechanical transplanting rice., 2013, 22(8): 38–41 (in Chinese with English abstract)

[19] 徐国伟. 种植方式、秸秆还田与实地氮肥管理对水稻产量与品质的影响及其生理的研究. 扬州大学博士学位论文, 江苏扬州, 2007 Xu G W. Effect of Planting Patterns, Straw Application and Site-specific Nitrogen Management on Grain Yield and Quality of Rice and Their Physiological Mechanism. PhD Dissertation of Yangzhou UniversityYangzhou, China, 2007(in Chinese with English abstract)

[20] 王建明, 杨建忠, 何晓艳, 毛华方, 石世杰. 小麦秸秆还田条件下氮肥运筹对水稻产量、品质和氮素利用的影响. 江苏农业科学, 2010, (6): 124–126 Wang J M, Yang J Z, He X Y, Mao H F, Shi S J. Effects of nitrogen application on yield, quality and nitrogen use efficiency of rice under wheat residue return., 2010, (6): 124–126 (in Chinese with English abstract)

[21] 朱斌, 苏建平, 李久进. 麦秸秆还田与氮肥不同运筹方式对水稻生长和产量的影响. 现代农业科技, 2012, (15): 12–15 Zhu B, Su J P, Li J J. Effects of different nitrogen application methods on growth and yield of rice., 2012, (15): 12–15 (in Chinese with English abstract)

[22] 刘世平, 陈文林, 聂新涛, 张洪程, 戴其根, 霍中洋, 许轲.麦稻两熟地区不同埋深对还田秸秆腐解进程的影响.植物营养与肥料学报, 2007,13:1049–1053Liu S P,Chen W L,Nie X T, Zhang H C, Dai Q G, Huo Z Y, Xu K. Effect of embedding depth on decomposition course of crop residues in rice-wheat system.,2007, 13:1049–1053(in Chinese with Englishabstract)

[23] 马宗国, 卢绪奎, 万丽, 陈祖光, 左辉.小麦秸秆还田对水稻生长及土壤肥力的影响.作物杂志, 2003,(5):37–38Ma Z G,Lu X K,Wan L, Chen Z G, Zuo H. Effect of wheat straw returning on rice growth and soil nutrients.,2003,(5):37–38(in Chinese with English abstract)

[24] Saigusa M,Hanaki M,Ito T.Decompositionpattern of rice straw in poorly drain paddy soil and recovery rateof straw nitrogen by rice plant in on-tillage transplanting cultivation., 1999,70:157–163

[25] Van Asten P J A,Van Bodegom P M,Mulder L M,Kropff M J. Effect of straw application on rice yields and nutrient availability on an Alkaline and a pH-neutral soil in a sahelian irrigation scheme., 2005,72:255–266

[26] 陆强, 王继琛, 李静, 王磊, 张丽, 哈丽哈什•依巴提, 王秋君, 张坚超, 黄启为, 沈其荣. 秸秆还田与有机无机肥配施在稻麦轮作体系下对籽粒产量及氮素利用的影响. 南京农业大学学报, 2014, 37(6): 66–74 Lu Q, Wang J C, Li J, Wang L, Zhang L, Halihashi Y, Wang Q J, Zhang J C, Huang Q W, Shen Q R. Effect of straw returning and combined applications of organic fertilizer and inorganic fertilizer on grain yield and nitrogen utilization under rice-wheat rotation system., 2014, 37(6): 66–74 (in Chinese with English abstract)

[27] 徐国伟, 吴长付, 刘辉, 王志琴, 杨建昌. 秸秆还田与氮肥管理对水稻养分吸收的影响. 农业工程学报, 2007, 23: 191–195 Xu G W, Wu C F, Liu H, Wang Z Q, Yang J C. Effects of straw residue return and nitrogen management on nutrient absorption of rice.2007,23: 191–195(in Chinese with English abstract)

Effects of Total Straw Returning and Nitrogen Application on Grain Yield and Nitrogen Absorption and Utilization of Machine TransplantedRice

LI Xiao-Feng, CHENG Jin-Qiu, LIANG Jian, CHEN Meng-Yun, REN Hong-Ru, ZHANG Hong-Cheng, HUO Zhong-Yang*, DAI Qi-Gen, XU Ke, WEI Hai-Yan, and GUO Bao-Wei

Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Jiangsu Province Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, China

Two regularrice cultivars in Jiangsu (Nanjing 5055 and Nanjing 46) were adopted in this study. The aim of this study was to discuss the influence of different nitrogen fertilizer applications on yield nitrogen absorption and utilization in mechanical transplantedrice, under the condition of total straw returning. Total amount of nitrogen fertilizer was 300 kg N ha–1, with treatments of different basal-tillering / panicle fertilizer ratios, including 9:1, 8:2, 7:3, 6:4, 5:5, and 4:6. The yield was significantly affected by total straw returning as compared with non-application of straw, that of Nanjing 5055 and Nanjing 46 increased by 5.04% and 4.64% reapectirely. The yield of machine transplantedrice with straw returned to the field first increased and then decreased with decreasing basal-tillering-fertilizer proportion, and the treatment with 7:3 of basal-tillering / panicle fertilizer ratio had the highest yield. With the same nitrogen application, dry matter accumulation of total straw returning treatment was lower than that of the control during the elongation stage and the transplantation to elongation stage, but higher at heading stage, mature stage, elongation to heading stage and heading to maturity stage.With the decrease of basal-tillering- fertilizer proportion, dry matter accumulation was decreased at elongation stage and transplantation to elongation stage, but first increased and then decreased during the heading, mature, elongation to heading and heading to maturity stages. In the treatment of 7:3 of basal-tillering/panicle fertilizer ratio, the dry matter accumulation, and economic coefficient were the highest in whole straw returning treatment. In the whole straw returning treatment, compared with the control, the nitrogen accumulation was lower before elongation, but higher at elongation to heading and heading to maturity stages. In addition, the nitrogen apparent efficiency, nitrogen agronomic efficiency and nitrogen partial factor productivity were also higher than thase of the treatment without straw application. In different nitrogen fertilizer applications, with the decrease of basal-tillering-fertilizer proportion, the nitrogen apparent efficiency, nitrogen agronomic efficiency, nitrogen physiological efficiency and nitrogen partial factor productivity were first increased and then decreased, reaching the highest point when the application proportion of base-tiller nitrogen fertilizer to earing nitrogen fertilizer was 7:3.

Total straw returning; Nitrogen application; Machine transplantedrice; Grain yield; Nitrogen uptake; Nitrogen use efficiency

本研究由国家重点研发计划项目(2016YFD0200805), 江苏农业三新工程项目(SXGC[2016]321)和江苏农业科技攻关项目(BE2015340, BE2016351)资助。

This study was supported by the National Key Research and Development Program (2016YFD0200805), the Three New Agriculture Project of Jiangsu Province (SXGC[2016]321), and the Research Program on Agricultural Science and Technology of Jiangsu Province (BE2015340, BE2016351).

(收稿日期): 2016-10-12; Accepted(接受日期): 2017-03-02; Published online(网络出版日期): 2017-03-29.

10.3724/SP.J.1006.2017.00912

(Corresponding author): 霍中洋, E-mail: huozy69@163.com, Tel: 0514-87979220

E-mail: leeanton39@163.com, Tel: 15358465457

URL: http://kns.cnki.net/kcms/detail/11.1809.S.20170329.1512.002.html

猜你喜欢

全量穗肥氮素
成都市温江区全力推进医保全量数据采集试点工作
不同穗肥用量和运筹对小麦生长的影响
大数据还是小数据?
271家网货机构公布资金存管信息超八成全量业务上线
穗肥施用时期对喀斯特区域杂交稻产量及农艺性状的影响
不同时期施用穗肥对水稻产量的影响
“秀水134”机穴播穗肥施用量研究初报
桃树氮素营养研究进展(2) ——桃树的氮素贮藏与循环利用
桃树氮素营养研究进展(1)——桃树对氮素的吸收、运转与利用
氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响