电厂热能动力锅炉燃料和燃烧探析
2017-05-31康付帅
康付帅
摘 要:目前,我国在电厂热能动力锅炉技术研究方面较为成熟,成为保障我国电力行业稳定发展的重要基础。虽然我国电厂热能动力锅炉应用状况整体较为良好,但在细节方面可能存在一定的问题。为此,深入的对现有电厂热能动力锅炉燃烧所存在的问题加以研究势在必行,成为提升我国电厂热能动力锅炉燃烧经济效益与社会效益的关键所在。因此,文章就电厂热能动力锅炉燃烧和燃料进行探析,并总结出电厂热能动力锅炉燃烧的基本原理及燃料燃烧基本种类与所需注意的相关事项。
关键词:电厂;热能动力;锅炉;燃烧;燃料
近年来,我国电厂热能动力锅炉应用较为广泛,成为我国电力行业发展主要的动力来源之一,为能够进一步提升电厂热力动能的应用效果,及时做好电厂热能动力锅炉的研究与分析便尤为重要,是现阶段解决我国电力热能锅炉燃烧相关问题与提高其实际燃烧效果的有效途径。
1 热能动力工程学科的发展概述
热能动力工程学是现代工程学领域中的一项新兴学科,其主要的研究对象是热能源与动力工程。而热能源又是现代工业中最主要的能源动力,这就决定了热能动力工程学这一专业的重要性。现如今,在我国的很多高等院校或高职院校中开展了热能动力工程学的相关专业,希望能够为社会培养更多的热能动力专业人才。在早期的热能动力工程专业中,主要是以热动能专业为主,其主要的研究内容为流体机械工程与热能工程。而现如今的热能动力工程专业则是以机械工程研究为主,其研究的内容主要是机械类以及动力工程,即将热动能的研究应用在机械工程实践中,实现了热动能与动力工程的结合。
当前的热能动力工程专业要求学生必须要熟练掌握工程热力学、传热学以及热工测试等方面的理论与实践技能,并能够将其创新应用在热动力机械的制冷装置与动力机械工程中。由于我国目前的工业还处于高速发展阶段,对高新科技人才的需求量较大,因此热能动力工程专业的学生就业形势相对较好,并且由于该专业的学科范围较广,因此学生的就业面也相对更宽泛。
2 工业锅炉能效现状
现阶段,工业锅炉已在我国多个地区广泛应用,成为现代工业发展的重要推动力之一,同时在城市的稳定运行方面工业锅炉也时刻发挥其重要作用。工业锅炉的广泛普及虽然对于社会的生产与发展提供了一定的便利条件,污染排放过高及能源消耗过大问题仍是工业锅炉发展有待解决的首要问题,其中我国部分大中型城市的工业锅炉污染排放已超过电站锅炉的基本排放量,成为现代环境污染的主要污染源。
由于我国人口基数相对较大,导致能源消耗速度逐步加快,继而使近年来的能源消耗产生了严重的能源短缺及供应紧张的问题。在我国2015年的锅炉生产制造调查过程中,已有1500余家企业取得了实际的燃煤锅炉生产许可,其中燃煤锅炉占锅炉生產总量的80%以上。目前,我国现有工业锅炉总量达702余万台,其中多以燃煤锅炉为主,每年我国在锅炉燃烧方面所消耗的燃煤数量达到全国燃煤产量的三分之一以上。虽然我国工业锅炉使用量规模庞大,但其实际的运行效率却难以得到有效的保障,与现阶段发达国家相比,我国的锅炉运行效率仅有50%左右,这便使燃煤的使用与效益的产出比例失衡问题日益加剧,进而造成了严重的燃煤资源浪费情况。
3 电厂热能动力设施与锅炉
电厂热力动力设施通过对燃料进行充分的燃烧来获取热能。在实际的操作过程中,大部分热能锅炉均可将石油、煤炭及天然气等作为主要的燃烧原料。热能动力装置主要由内燃机、燃气轮机及汽轮机构成。在实际运行过程中,热能动力锅炉需首先将燃料热量转换为动力热能。而后通过锅炉对蒸汽与水的输出来提供源源不断的动力。由于锅炉燃烧会将燃烧预热传输至水容器当中,这便使水易对锅炉的基本热能进行吸收,此时即可将其化为内燃动力。
4 电厂热能动力锅炉燃料分析
锅炉在实际的运行过程中并不生产热量,而是将燃料转化热量,以此产生源源不断的动力。根据热源选用的不同,锅炉也分为多个种类,其中以电锅炉、生产余热锅炉、石油锅炉、天然气锅炉及煤炭燃烧锅炉最为普遍。煤炭燃烧的主要燃烧原料即是煤炭,通过对煤炭结构的分解,来提高煤炭的热力动能。在此过程中,利用水等载体进行进一步的加热,此时便可产生一定的温度与压力。石油锅炉的基本种类较多,其实际的用途也相对广泛。热水锅炉及采暖锅炉等均包括在石油锅炉之内。天然气锅炉相比于石油锅炉污染更低,同时运行效率也相对更高,是未来锅炉技术发展与制造的主要方向。天然气锅炉适应性较强,不仅可将天然气作为动力热能转换的原料,同时也可对木材及谷糠进行燃烧,并将其转化为实际的运行动力。在电厂的热能动力锅炉使用过程中,仍以煤炭、石油及天然气为主,其中煤炭锅炉在电厂中应用较为广泛,是我国主要的锅炉动力来源之一。煤炭锅炉应用效果良好的主要原因是其结构构成稳定,其中碳、氧、氮等主要元素是煤炭燃烧重要结构体,氧气作为燃烧的辅助体,能够更为有效为碳结构提供燃烧热力,因而在实际燃烧过程中能够产生更大的燃烧动能,继而有效提升了锅炉的应用效果。
5 电厂热能动力锅炉燃烧的方式及特点
5.1 气体燃料燃烧类型
目前,锅炉气体燃烧的主要类型仍以气体长焰燃烧为主,由于其燃烧面积较大,通过不与气体产生直接的接触,继而为称之为扩散型燃烧。在该类型气体燃烧过程中,需在火焰喷射的过程中,利用扩散的基本优势来与空气进行结合,以便于提高燃烧的实际效果,此时火焰的燃烧长度便迅速增加。
该类型燃烧受烧嘴的限制,因而无法在实际的燃烧过程中充分的与空气进行接触,其实喷射过程中,需在另一部燃烧过程中与空气进行接触,以此提高火焰的燃烧效果,由于受空气助燃作用的影响,此时火焰的长度相对较短,同时另一部燃烧也与气体充分结合,这便能够使其加速火焰的喷射,由于喷射速度的加速,通常无法直接观察到火焰的形状及结构。
5.2 固体燃料燃烧类型
固体燃烧类型主要存在于挥发性质较差及不具备挥发结构的固体燃料中。通常在实际的运行过程中,燃烧结构的表面以二氧化碳及一氧化碳为主,如实际的燃烧条件允许,二氧化碳会通过实际的氧化作用被转化为燃烧的一氧化碳结构。其主要的燃烧条件主要是熔点相对较低的燃烧,在实际的燃烧过程中,由于未能为氧气充分的接触,这便降低了结构可燃性,继而产生固体的燃烧形态。该类型燃烧在实际的生活中较为常见,如在蜡烛的使用过程中,使用时间过长即可较为明显的发现固体燃烧的基本特点。固体燃烧主要针对容易被燃烧而分解的结构,所以在燃烧过程中,即可产生较为浓重的烟雾。在燃烧相对较为潮湿的报纸及木材时,该状况的发生较为明显,进而也可被视为结构燃烧的不充分而产生固体燃烧的情况。
6 电厂热能动力锅炉燃烧过程
6.1 预热
通常预热的作用在于提高燃料的蒸发效果使其能够迅速的溶解,所以在开始燃烧前需对锅炉中的燃料进行烘干。然后通过与热处理的方式进行增温。通常温度需保持在300℃以上,最高温度不得超于4000℃在环境下煤炭的热力动能燃烧较为充分,能够有效地脱去煤炭中的水分,继而形成焦炭。
6.2 燃烧
在预热阶段完成后,燃料的烘干与挥发使剩余焦炭燃烧效果大大提高。在此过程中仅需要为其提供充分的氧气即可一步提高焦炭的实际燃烧效果,这便能有效解决电厂热力锅炉燃烧效果不佳的问题。
6.3 燃尽
在燃烧一段时间以后,燃料中的可燃部分几乎全部燃烧干净,只有一小部分由于炭灰的包裹而没有得到燃烧,在此阶段,并不能停止供氧,需持续通入一段时间的空气,从而帮助剩余燃料进行燃烧,提高燃烧的利用率。
7 结束语
电厂热力锅炉种类较多,其实际的应用效果也有着一定的差异。这便使其在应用过程中需根据实际的环境情况及电厂的实际条件来选择适宜的锅炉燃烧种类,从而提升锅炉燃烧的经济效益。因而在未来阶段相关工作的开展过程中,要对电厂热能动力锅炉的实际燃烧原理进行充分研究,从而有效地解决电厂热能动力锅炉燃烧中存在的问题,以便于推动电厂热能动力锅炉有用的规范化与标准化发展。
参考文献
[1]冯宝辉.关于电厂热能动力锅炉燃料及燃烧分析[J].工程技术:全文版,2016(12):00304-00304.
[2]田万喜.电厂热能动力锅炉燃料及燃烧分析探讨[J].工程技术:全文版:00274-00274.
[3]刘国文.关于电厂热能动力锅炉燃料及燃烧的探析[J].建筑工程技术与设计,2016(20).
[4]丁新国.电厂热能动力锅炉燃料及燃烧的探析[J].建筑工程技术与设计,2016(27).
[5]许亦然,贾涛.基于电厂热能动力锅炉燃料及燃烧过程的分析[J].华东科技:学术版,2016(9):97-97.
[6]宋向飞.探讨电厂热能动力600MW机组锅炉燃料及燃烧分析[J].华东科技:学术版,2015(8):222-222.