APP下载

模糊模式识别在计算机识别中的应用研究

2017-05-26任书淼

科技资讯 2017年10期
关键词:识别研究应用

任书淼

摘 要:当前,计算机技术已经得到了很大的发展,其在各行各业中的应用也变得更加广泛。所以,需要对计算机识别的相关技术进行有效的探讨,进而有效地对计算机识别技术进行应用。在这个过程中,模糊模式识别技术在计算机识别领域中得到了非常广泛的应用。因此,笔者针对模糊模式识别技术的优点,对其在计算机识别中的应用进行了研究。

关键词:模糊模式 识别 计算机识别 应用 研究

中图分类号:TP391.4 文献标识码:A 文章编号:1672-3791(2017)04(a)-0008-02

在计算机识别中,对模糊模式识别进行了有效的应用。在模糊集合当中,通常是对一个概念的内涵进行有效的描述。在这个过程中,将数学方法进行应用能够对人的思维过程进行有效的模拟,将这项识别技术应用在计算机识别中,能够有效地提高整个系统的可靠性。

1 关于模糊模式识别的概念

模糊模式识别技术是随着计算机技术的不断发展和成熟而逐渐发展起来的。现阶段,模糊模式识别技术已经成为一门比较系统的内容。关于模式识别,是近年来不断发展的一项人工智能技术,这项技术既能够对具体事物的识别,又能够对抽象的事物进行有效的识别。而模糊模式识别技术则是识别技术与人的思维之间的一种结合,在模糊模式识别技术中,能对文字、音乐以及图片等有效地识别,使得模式识别技术进入了新的发展阶段。

2 模糊模式识别的建立

在建立模糊模式识别方法的过程中,可以将数学方法进行合理的应用。将X作为一个样本的集合:X={x1,x2,x3……x(im-1),xim},在这个集合中,样本xi的特性指标有m个,那么对xi的特性指标进行研究,得出来的矩阵如下:

在这个过程中,通过对数学方法进行引入,就有效地对模糊模式识别方法进行了建立,同时,在建立的过程中,还需要建立相应的训练样本集。

3 模糊模式识别的重要作用

在计算机识别技术发展的过程中,模糊模式识别已经得到了长足的发展。在模糊模式识别技术中,能够对传统的模式识别技术进行有效的补充,并对这个过程中产生的新事物进行有效的统计,也能够对系统中出现的不确定的事物进行有效的识别与判断。这样识别技术实际上是以基础数学作为基础将数学理念引入其中,能够对整个程序进行有效的简化,也使得模式识别系统更加广泛地在生产生活中进行应用。所以说,模糊模式识别系统的出现,加强了计算机识别中对模式识别的有效应用,也将传统的模式识别系统当中对事物的识别转变成为对一些声音和图片的识别,加强了模式识别技术的实际应用。

4 计算机识别中应用模糊模式识别的研究

现阶段,计算机技术已经得到了飞速的发展,计算机系统科学的相关理论也得到了发展。所以,在这个过程中,想要利用识别系统更好地认识抽象事物,就应该利用计算机识别技术对一些复杂的事物进行有效的分析与处理,这就需要对模糊模式识别系统进行有效的应用,进而达到相应的效果。

4.1 计算机数据识别应用模糊模式识别系统

在模糊模式识别体系中,实际上是对现实生活中的一些模糊现象进行有效的处理,这样就能够对实际生活中的问题进行合理的解决。在计算机识别的过程中,对模糊模式识别体系进行有效的应用,能够对原有的利用人的思维模式对事物信息进行判断的模式进行有效的改善,这样就能够避免判断工作的片面性,使得计算机识别的结果变得更加精确。在这个过程中,利用模糊模式识别技术,能够对人的思维过程进行一个有效的模拟,这样就有效地提高了计算机的智力水平,也能够对整个计算机识别系统的可靠性得到了提高。在一些事物的检查判断的过程中,使用人工检查的方式尽管能收到显著的效果,但是人工检查的效率却比较低,这样就会对人造成严重的疲劳现象。利用模糊模式识别体系,能够对检查事物进行有效的识别,提高了计算机识别系统的可靠性。

4.2 计算机图形识别应用模糊模式识别系统

关于模糊集理论是Zadeh在1965年提出的。这个理论的提出,让人们对事物的统一值,有了一个显著的认识,这也是一种新的刻画事物的方法。这种方法对以往事物呈现方式进行了有效的改变,并提出了内涵数学模式和外延数学模式。在这个过程中,A类问题和B类问题的认知中,传统的逻辑认为样本不是属于A,就是属于B。不过,在模糊模式识别过程中,可能出现样本不仅属于A类问题也属于B类问题。这种识别方法与一般的模式识别方法进行比较之后,能够发现,模糊模式识别方式在信息利用的过程中显得更加充分,且这种算法也更加简单,具有较强的推理性。

在计算机识别技术中,应用模糊模式识别的关键一环,就是建立相应的隶属度函数。现阶段,模糊模式识别中的隶属度函数建立的方法有模糊分布方法和模糊统计方法两种重要的类型。在建立隶属度函数的过程中,需要遵循函数的客观规律,保证函数的构建更加科学,并能够利用模糊模式识别系统中所建立的隶属度函数,对计算机图形识别中的各项问题进行有效的解决,并能够收到显著的效果。

4.3 计算机病毒识别应用模糊模式识别系统

4.3.1 提取计算机病毒特点

将模糊模式识别技术应用在计算机的病毒识别过程中,首先需要对病毒的特征进行有效的检测。这个过程中,需要现将计算机的病毒样本进行提取,并将提取的病毒样本加入到计算机病毒库中,并在病毒库中进行搜索,进而找到与该病毒相似的病毒类型,针对病毒的类型及特点,开展检测工作。在这个过程中,采用模糊模式识别技术,能够完成对计算机内的可用文件的分析,并能够对计算机的行为差异进行合理的分析,这样就能够收到良好的检测病毒的重要目的。在病毒梯度的过程中,可以对win.ini的文件夹进行有效的修改,进而对病毒特征进行有效的提取。

4.3.2 计算机病毒检测

在计算机病毒的识别过程中,对病毒特征进行识别之后,还应该对病毒进行有效的检测。在检测的过程中还可以对模糊模式识别技术进行有效的应用。在这个过程中,能够利用相应的病毒检测工具来对程序类型进行有效的归纳,并对样本进行有效的划分,这样就能够对具有相应的特征的程序类型进行有效的识别,进而达到对计算机的病毒检测的重要目的。只有准确的检测出计算机病毒的类型,才能够采取措施进行杀毒。这个过程,很好的体现了模糊模式识别在计算机识别当中的重要作用,推动了计算机识别技术的有效發展与成熟。

5 结语

总之,随着计算机信息技术的不断发展,模糊模式识别技术会更加广泛应用在社会生活当中。在计算机识别体系中,对模糊模式识别技术进行应用,能够完成对计算机的数据识别、图片识别以及病毒识别,这样就能够保证计算机稳定工作,促进了信息智能化技术的进一步发展,也使得计算机识别技术得到了更加广泛的应用。

参考文献

[1] 段旭琴,丁照忠,段健,等.多级模糊模式识别模型在评价高炉喷吹混煤中的应用[J].煤炭学报,2011(10):1748-1752.

[2] 陈守煜,王子茹,罗宝力,等.可变模糊模式识别方法及在水电站地下厂房岩体稳定性评价中的应用[J].水利学报,2011(4):396-402.

[3] 王辉,郑文栋,吴晓春,等.模糊聚类算法参数优选方法及其在局部放电模式识别中的应用[J].高电压技术,2010(12):3002-3006.

猜你喜欢

识别研究应用
谁说小孩不能做研究?
Applications of Deep Mixing to Earthquake Disaster Mitigation
A Thought:What have We Learned from Natural Disasters? Five Years after the Great East Japan Earthquake
对周期函数最小正周期判定法的研究与应用
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析
会计与统计的比较研究
论犯罪危险人格的识别