对高中数学解题技巧的探讨
2017-05-02刘小朋
刘小朋
摘要:数学是高中课程的重要科目之一,高考的成败,数学占有很大的因素,所以学好数学是高中学生学习的一个重点,也是一个难点,学好数学的关键在于解题的技巧。
关键词:数学;解题;方法
中图分类号:G633.6 文献标识码:B 文章编号:1672-1578(2017)02-0100-01
在学习过程中,要遵循解题方法,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,发现解题规律,总结解题技巧。
1.审题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
2.熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。常用的途径有:
2.1 充分联想回忆基本知识和题型。按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
2.2 全方位、多角度分析题意。对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
2.3 恰当构造辅助元素。数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化為熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
3.会做的题保证做对
这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对的情况,我们自己的估分和得分相差甚远。如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是少 的可怜。所心我们要边做边检查解题思路正确与否,做完后认真核对。不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。
还有好多同学把本来做对的题改错了,这就得不偿失了。虽然这种情况是偶然的,但肯定是你在做的过程当中对某一个题目产生怀疑,又没太大的把握。遇到有疑问的题,我建议不要着急,我们做题的第一感觉是非常重要的,如果基本思路上没有大的错误,那么你凭着这个思路题做下去,仔细回忆有关的知识点。有时还会出现运算的错误,可能是由于紧张或粗心,平时要更加重视此类问题,又要养成良好的习惯,比如做一步回头看看,或者做两步回头看看,边解题边检查。不要总是犹豫不觉,做完了就要坚定信心。不要变成精神负担。
总之,目前的高考试题不是按照由易到难的次序排列的,处处有关口,所以大家要注意,目前的高考试卷是多题把关,任何一道数学题,都包含一定的数学条件和关系,就像地雷阵似的,处处有地雷,要想解决它,就必须依据相应的办法来对付,题目都有具体特征,找到解题技巧,提升能力,培养自己的数学思想。即使遇到困难,也不要放弃,相信自己。