APP下载

紫云英与氮肥配施对早稻干物质生产及氮素吸收利用的影响*

2017-04-08钱晨晨王淑彬杨滨娟黄国勤

中国生态农业学报(中英文) 2017年4期
关键词:紫云英早稻成熟期

钱晨晨, 王淑彬, 杨滨娟, 黄国勤**



紫云英与氮肥配施对早稻干物质生产及氮素吸收利用的影响*

钱晨晨1,2, 王淑彬1,2, 杨滨娟1,2, 黄国勤1,2**

(1. 江西农业大学生态科学研究中心 南昌 330045; 2. 江西省高校生态学学科联盟 南昌 330045)

为综合评价紫云英与氮肥配施对早稻干物质生产及氮素吸收利用的影响, 筛选紫云英等量翻压条件下, 较适宜的施氮水平, 以冬闲常规施氮[150 kg(N)·hm-2]处理为对照, 在翻压紫云英22 500 kg∙hm-2条件下, 设置90 kg(N)∙hm-2、120 kg(N)∙hm-2、150 kg(N)∙hm-2和180 kg(N)∙hm-24个施氮水平, 研究紫云英和施氮量对早稻干物质生产及氮素吸收利用的影响。结果表明: 紫云英与氮肥配施各处理的干物质积累量均高于对照, 其中紫云英配施氮肥90 kg(N)∙hm-2和120 kg(N)∙hm-2的干物质积累量最多, 分别达9.65 t·hm-2和9.97 t·hm-2, 比对照分别增加11.18%和14.86%。各处理在水稻播种—分蘖期及抽穗—灌浆期干物质积累量较大, 占成熟期干物质量的19.26%~24.77%和45.23%~52.75%, 这两个生育阶段是干物质主要积累时期。紫云英与氮肥配施各处理的氮素积累量均高于对照, 增幅为6.95%~18.68%。氮素干物质生产效率和氮收获指数均以紫云英配施90 kg(N)∙hm-2处理最高, 比其他处理分别增加3.94%~14.08%和6.65%~14.90%。紫云英配施氮肥有利于提高早稻的干物质积累量和氮素利用率, 其中以紫云英配施氮肥90 kg(N)∙hm-2和120 kg(N)∙hm-2效果较优, 可实现减氮增效目的, 是较理想的施肥模式。

紫云英; 氮肥; 早稻; 干物质; 氮素吸收

紫云英(L.)是我国南方稻区传统的冬绿肥, 翻压后能够增加土壤养分、改善土壤理化性状、提高植株氮磷钾含量、减少化肥用量[1-3]。近几十年来, 随着我国农业集约化程度的加深, 化肥因具有便捷、增效快等优点成为粮食增产的主要依赖对象, 这使我国普遍存在忽视绿肥施用、过度依赖化肥的现象, 化肥特别是氮肥用量过大, 目前我国水稻平均氮肥施用量为180 kg∙hm-2, 较世界平均水平增加75%, 有些地区甚至超过300 kg∙hm-2[4-5]。而过量施用氮肥会降低氮素利用效率[6], 造成作物贪青晚熟, 并引发一系列环境问题[7]。因此, 利用冬季空闲茬口种植紫云英, 并进行合理的养分管理, 在维持水稻产量高产的同时提高氮肥利用率, 对于实现水稻优质、高产、高效, 减少肥料损失具有十分重要的意义。国内外关于绿肥与化肥配施对水稻增产效果的研究已有不少报道, 多数研究表明, 利用紫云英根瘤菌固氮, 并配施适量化肥, 改善了土壤肥力, 其增产效果较好[8-9]。谢志坚等[10]通过研究翻压等量紫云英配施不同量化肥的土壤养分有效性表明, 紫云英配施60%~80%常规施肥量的化肥(常规施肥为: N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2), 土壤中的碱解氮和速效钾能够增加10%~59%。王建红等[11]研究了紫云英还田配施化肥对单季晚稻养分利用和产量的影响, 结果表明紫云英鲜草翻压配施化肥处理的稻谷产量比不施肥处理提高8.5%~ 17.4%。侯红乾等[12]连续25年在江西省双季稻区进行田间定位试验, 研究表明, 有机无机肥配施条件下早晚稻平均产量比单施化肥增产3.9%~7.8%。徐昌旭等[13]研究结果表明, 早稻减少化肥用量20%(常规施肥为: N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2)能有效促进水稻植株对氮、磷、钾养分的吸收与积累。国内外学者关于作物合理施肥研究很多, 但对于通过绿肥种植翻压减少化肥施用的水稻环境友好型栽培条件下水稻氮肥适宜用量的研究报道较少。而很多绿肥还田的研究多以紫云英还田与化肥配施(或有机无机肥配施)为重点, 对紫云英配施氮肥的研究不够系统充分。本研究利用冬季空闲茬口种植紫云英, 通过比较紫云英还田配施不同氮肥施用量下水稻干物质生产特性及氮素吸收利用的情况, 对冬种紫云英条件下稻田的合理施氮量进行探究, 从而为水稻可持续生产和水稻保护性耕作提供理论依据。

1 材料与方法

1.1 试验区概况

试验于2014年10月至2015年7月在江西农业大学科技园水稻实验田(28°46′N, 115°55′E)进行。试验区为亚热带季风性湿润气候, 年均太阳总辐射量4.79×1013J·hm-2, 年均日照时数1 852 h, 年日均温≥0 ℃积温达6 450 ℃, 年平均气温17.1~17.8 ℃, 年降水量1 624 mm。供试土壤为发育于第四纪的红黏土, 为亚热带典型红壤分布区。紫云英种植前试验耕层土壤pH 5.59, 有机质29.48 g∙kg-1, 全氮2.17 g∙kg-1, 碱解氮38.69 mg∙kg-1, 有效磷12.22 mg∙kg-1, 速效钾30.31 mg∙kg-1。

1.2 试验设计

采取单因素随机区组设计, 以冬闲常规施氮处理[150 kg(N)·hm-2]为对照(处理A), 在等量翻压紫云英鲜草22 500 kg∙hm-2(干草养分含量: 全氮26.7 g∙kg-1, 全磷2.1 g∙kg-1, 全钾20.1 g∙kg-1)条件下, 施氮量设90 kg(N)∙hm-2(处理B)、120 kg(N)∙hm-2(处理C)、150 kg(N)∙hm-2(处理D)和180 kg(N)∙hm-2(处理E)4个水平, 共5个处理, 所有处理3次重复, 15个小区, 小区面积为16.5 m2(5.5 m×3 m), 小区之间用水泥埂隔开, 以防止水肥串流。供试紫云英品种为‘余江大叶籽’, 2014年10月4日播种, 2015年4月3日盛花期翻压。早稻品种为‘金优458’, 于2015年3月27日播种, 4月29日移栽, 7月28日收割。每兜3苗, 每小区325兜。各处理氮肥用尿素(含N 46%), 磷肥用钙镁磷肥(含P2O512%), 钾肥用氯化钾(含K2O 60%)。磷肥、钾肥各小区施用量相同, 磷肥(P2O5)50 kg∙hm-2, 钾肥(K2O)120 kg∙hm-2, 全部作基肥; 氮肥按基肥︰分蘖肥︰穗肥=5︰3︰2施用。分蘖肥在水稻移栽后5~7 d时施用, 穗肥在主茎幼穗长1~2 cm时施用。田间管理措施同一般大田栽培。

1.3 测定指标及计算方法

1.3.1 干物质测定

于早稻分蘖期(2015年6月1日)、孕穗期(6月14日)、抽穗期(6月25日)、灌浆期(7月6日)和成熟期(7月25日)按每小区茎蘖数的平均数取代表性植株5穴(小区边行不取), 分成叶片、茎鞘和穗(抽穗后)等部分装袋, 105 ℃下杀青30 min, 80 ℃下烘干至恒重后称重。干物质转运相关指标计算方法[14]分别为:

茎叶干物质输出量=抽穗期茎叶干物重-成熟期茎叶干物重 (1)

茎叶干物质输出率=茎叶干物质输出量/抽穗期茎叶干物重×100% (2)

表观转变率=茎叶干物质输出量/抽穗至成熟期穗部干物质积累量×100% (3)

1.3.2 植株氮素测定

每时期植株干物质积累测定完成后粉碎混匀, 采用H2SO4-H2O2消化, 以半微量开氏定氮法测定植株各器官全氮含量。相关指标计算方法[15]分别为:

氮素积累量=该时期地上部干物重×含氮量 (4)

氮素干物质生产效率(NDMPE)=单位面积植株干物质积累量/植株氮积累量 (5)

氮收获指数(NHI)=籽粒氮素积累量/植株氮素积累量 (6)

1.4 数据处理

本研究所有数据的基本统计采用Microsoft Excel 2010, 采用SPSS 17.0软件进行统计分析。

2 结果与分析

2.1 紫云英与氮肥配施对早稻干物质积累的影响

2.1.1 主要生育期群体干物重

由表1可知, 不同施肥条件下早稻主要生育期地上部群体干物重因生育期不同而有所差异。分蘖期各处理间差异不显著(>0.05)。从孕穗期开始, 各处理的差异逐渐显现。除分蘖期以外, 其余生育期处理C的干物质积累量均达最大, 且在孕穗期与其他处理间差异显著(<0.05)。在抽穗期, 处理B、C、D的干物质积累量显著高于A、E处理(<0.05)。在灌浆期, 处理B、C干物质累积量显著高于处理A(<0.05), 增幅分别为16.77%和17.02%。在成熟期, 处理B、C、D干物质累积量显著高于处理A(<0.05), 且处理C与处理A、E差异显著(<0.05)。

表1 各处理对早稻主要生育期群体干物重的影响

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

2.1.2 主要生育阶段干物质积累量和比例

从早稻主要生育阶段干物质积累量和比例来看(表2), 水稻播种—分蘖期及抽穗—灌浆期是干物质主要积累时期, 水稻在这两个生育阶段干物质积累量较大, 各处理在这两个生育阶段干物质积累量占成熟期干物重的19.26%~24.77%和45.23%~52.75%, 但均未达显著性差异(>0.05)。在分蘖—孕穗期处理C的干物质积累量最大, 且显著高于处理A、D、E (<0.05); 在孕穗—抽穗期, 处理D的干物质积累量最大, 显著高于处理C、E(<0.05), 增幅均为38.89%; 而灌浆—成熟期各处理间干物质积累量差异不显著(>0.05)。

表2 各处理早稻主要生育阶段干物质积累量和比例

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。DMA: 生育阶段干物质积累量; RTDM: 该生育阶段干物质积累量占总积累量的比重。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. DMA: amount of dry matter accumulation at the growth stage; RTDM: ratio of dry matter accumulation to total accumulation in the growth stage. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

2.1.3 干物质在茎鞘、叶片和穗的分配情况

通过分析茎鞘、叶片和穗分配情况(表3)可知, 早稻干物质茎鞘比例在抽穗期达最大, 并随着生育进程的推进有不断降低的趋势。抽穗期处理C的茎鞘比例最大, 达46.50%, 与处理A、E差异显著(<0.05), 分别增加7.83个百分点和4.75个百分点。叶片比例的变化趋势与茎鞘比例一致, 在抽穗期达最大, 各处理间差异显著(<0.05), 其中处理A叶片比例最大, 为41.33%; 成熟期处理D的叶片比例最大, 为14.00%, 与处理A、B、E差异显著(< 0.05)。穗比例随着生育进程的推进呈现出不断上升的趋势, 各处理均在成熟期达最大, 从抽穗期的18.50%~ 23.50%增加到成熟期的64.50%~68.67%。抽穗期处理D的穗比例最大, 并与处理C差异显著(<0.05); 成熟期处理B与处理A、C、D差异显著(<0.05)。

表3 各处理早稻中、后期干物质在茎鞘、叶片和穗的分配情况

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

2.1.4 干物质的转运

从表4可知, 处理B的早稻茎叶干物质输出量、输出率和表观转变率均达到最大, 处理C次之, 处理E达到最低, 处理D的3个指标高于处理A, 但未达到显著性差异(>0.05)。说明在紫云英全量还田条件下, 减量施氮促进了早稻地上部分营养器官的干物质向籽粒中转移, 且相同施氮量下, 紫云英还田与否对干物质从营养器官向籽粒中转移效果并不明显, 而高量施氮反而抑制了干物质的转移。

2.2 紫云英与氮肥配施对早稻氮素含量的影响

2.2.1 主要生育期氮素吸收积累量

由图1可知, 紫云英配施氮肥条件下早稻主要生育期氮素吸收积累量因生育期不同而有所差异, 且呈逐渐升高的趋势, 在成熟期达最大。分蘖期各处理间氮素吸收积累量差异不显著(>0.05)。除抽穗期处理D的氮素积累量最大外, 孕穗期、灌浆期和成熟期都是处理C的氮素积累量达最大, 且均显著高于处理A, 其中灌浆期和成熟期亦显著高于处理B(<0.05)。

表4 各处理早稻干物质的转运

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+ 120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+ 180 kg(N)·hm-2。不同小写字母分别表示同一生育时期各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Different lowercase letters mean significant differences at the same growth stage at 0.05 level.

2.2.2 成熟期茎、叶、穗的氮素养分含量及吸收量

由表5可知, 不同施肥处理成熟期早稻茎、叶、穗氮素养分含量存在差异, 且不同施肥处理对各养分器官的氮素养分吸收量存在较为明显的影响。从茎全氮含量看, 处理C、D、E均显著高于处理B(<0.05), 可能是紫云英还田条件下, 较高施氮量一定程度上促进了茎中氮素的累积, 也可能是由于处理B本身的施氮量较其他处理少; 从叶全氮含量看, 各处理间并无显著差异; 从穗全氮含量看, 也是处理E显著高于其他处理(<0.05)。从茎氮素吸收量看, 处理C显著高于处理B(<0.05); 从叶片氮素吸收量看, 处理D显著高于处理B(<0.05); 从穗氮素吸收量看, 4种紫云英配施氮肥处理均显著高于处理A(<0.05)。

表5 各处理早稻成熟期茎、叶、穗的氮素养分含量及吸收量

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

2.2.3 氮素养分吸收利用效率

由表6可知, 不同施肥处理下早稻的氮素养分吸收利用效率存在差异。从氮素干物质生产效率(NDMPE)看, 氮素干物质生产效率表现出随施氮量的增加而下降的趋势。处理B的氮素干物质生产效率最高, 比其他处理增加3.94%~14.08%。氮收获指数(NHI)反映了氮素在植株营养器官与生殖器官间的分配情况, 结果显示不同施肥处理对早稻氮收获指数存在一定的影响。各处理氮收获指数为61.83%~71.04%, 其中处理B的氮收获指数显著高于其他处理(<0.05), 处理E次之。因此, 在各处理中, 处理B的氮素干物质生产效率和氮收获指数较高, 分别为71.44 kg·kg-1和71.04%。

表6 各处理早稻的氮素干物质生产效率(NDMPE)和氮收获指数(NHI)

A: 冬闲+150 kg(N)·hm-2; B: 紫云英+90 kg(N)·hm-2; C: 紫云英+ 120 kg(N)·hm-2; D: 紫云英+150 kg(N)·hm-2; E: 紫云英+180 kg(N)·hm-2。数据为3个重复的平均值±标准误; 同列不同小写字母分别表示各处理间差异显著(<0.05)。A: winter fallow with 150 kg(N)·hm-2application in early rice; B: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; C: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; D: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice; E: Chinese milk vetch plantation in winter and incorporation in spring combined with 90 kg(N)·hm-2application in early rice. Values in the table are mean ± SE of 3 replicates. Different lowercase letters in the same column mean significant differences at 0.05 level.

3 讨论与结论

研究表明, 有机无机肥配施有利于促进植株干物质积累[16]。徐昌旭等[13]研究结果显示, 翻压22 500 kg∙hm-2紫云英后, 与施用100%化肥(N 150 kg∙hm-2、P2O575 kg∙hm-2、K2O 120 kg∙hm-2)相比, 减少化肥用量可以促进干物质的积累; 减少化肥用量20%, 水稻干物质积累量平均增加18.8%, 而化肥用量减少到常规用量的40%~60%时, 干物质积累量并没有减少。杨长明等[17]研究结果表明: 有机无机肥配施有利于水稻植株在灌浆期对干物质的积累。姜佰文等[18]研究结果显示, 在等量有机肥用量条件下, 配施适宜比例的无机肥能够提高总干物质积累量18.8%~26.9%。本研究结果同样表明, 与对照处理相比, 紫云英与氮肥配施各处理的早稻干物质积累量均在一定程度上有所提高, 其中以紫云英配施120 kg∙hm-2氮肥处理的干物质积累量最大。各处理在抽穗—灌浆期的干物质积累比例均最大, 而紫云英与氮肥配施处理在这一阶段的干物质积累量较冬闲处理平均增加10.01%。聂俊等[19]研究结果表明, 有机肥与化肥配施可以提高水稻分蘖期到成熟期的干物质积累, 而本研究结果显示紫云英与氮肥配施对干物质积累的优势仅从孕穗期开始, 在分蘖期冬闲常规施氮处理、紫云英配施150 kg∙hm-2氮肥和180 kg∙hm-2氮肥处理的干物质积累量均高于紫云英配施90 kg∙hm-2氮肥和120 kg∙hm-2氮肥处理, 这可能是因为紫云英翻压后由于前期气温低, 氮素释放慢, 并未完全转化成可被直接利用的形式, 氮素供应相对不足[20], 而氮肥作为速效肥料, 养分释放速度较快, 因此氮肥施用量大的处理在水稻生育前期长势较好, 而紫云英与氮肥配施处理在水稻生育中后期长势较好。从早稻干物质转运情况看, 随着施氮量的增加, 茎叶干物质输出量、输出率及表观转变率呈下降趋势, 这与朱冰[21]、赵田径等[22]的研究结果一致。

养分吸收是物质生产的基础。植物中的养分从土壤中获得, 杨馨逸等[23]认为在相同肥力下, 土壤氮素转化率随着施氮量的增加呈现先上升后下降的趋势, 只有施入适宜的氮量才能协调好土壤供氮和作物需氮之间的关系。因此, 氮肥施用不合理、养分供应不同步是氮素利用效率低的主要原因[24]。常用的氮肥是速效肥料, 冬闲处理在水稻生长前期供肥过旺、后期供肥不足, 而紫云英与化肥的养分释放速率不同, 翻压紫云英处理在水稻全生育期都有充足的养分供应。要文倩等[25]研究结果表明, 有机无机肥配施有利于提高水稻养分利用效率, 促进氮素吸收。商跃凤[26]研究表明有机无机氮肥混施氮肥利用率比单施化肥提高7%~18%。张小莉等[27]研究结果亦表明, 有机无机复混肥处理的氮素积累量、氮素利用效率均显著高于化肥处理。本试验中, 紫云英与氮肥配施增加了水稻的氮素吸收量, 与不施紫云英处理相比, 紫云英与氮肥配施处理的早稻氮素吸收量增加6.95%~18.68%, 其中紫云英配施120 kg∙hm-2氮肥处理的氮素吸收积累量最高。这与李贺[28]、孟琳[29]的研究结果类似。本试验中, 氮素干物质生产效率随着施氮量增加呈先上升再下降的趋势, 说明在一定范围内, 施氮量增加能促进作物对氮素的吸收利用, 但当氮肥过量施用时, 会造成水稻对氮素的奢侈吸收[30], 从而降低氮素利用率, 这与前人[11]的研究结果一致。

本试验条件下, 与不施紫云英处理相比, 紫云英配施氮肥处理提高了水稻干物质积累量、氮素吸收积累量以及氮素利用率, 其中以紫云英配施纯氮90 kg∙hm-2和120 kg∙hm-2处理的效果较优, 明显地实现了减氮增效的目的, 是较理想的施肥模式。

[1] Zhou C H, Zhao Z K, Pan X H, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system[J]. Rice Science, 2016, 23(3): 132–143

[2] 郭晓彦, 宋晓华, 刘春增, 等. 紫云英翻压量和化肥用量对水稻生长、产量及经济效益的影响[J]. 山地农业生物学报, 2014, 33(5): 7–12 Guo X Y, Song X H, Liu C Z, et al. Effects ofmanure application and chemical fertilizer dosage on growth, yield and economic efficiency of rice[J]. Journal of Mountain Agriculture and Biology, 2014, 33(5): 7–12

[3] Lee C H, Park K D, Jung K Y, et al. Effect of Chinese milk vetch (L.) as a green manure on rice productivity and methane emission in paddy soil[J]. Agriculture, Ecosystems & Environment, 2010, 138(3/4): 343–347

[4] Peng S B, Huang J L, Zhong X H, et al. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agricultural Sciences in China, 2002, 1(7): 776–785

[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3–8

[6] 赵宏伟, 沙汉景. 我国稻田氮肥利用率的研究进展[J]. 东北农业大学学报, 2014, 45(2): 116–122 Zhao H W, Sha H J. Recent research on fertilizer-nitrogen use efficiency in paddy flied of China[J]. Journal of Northeast Agricultural University, 2014, 45(2): 116–122

[7] Roelcke M, Han Y, Schleef K H, et al. Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China[J]. Pedosphere, 2004, 14(4): 449–460

[8] 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J].生态学报, 2011, 31(16): 4542–4548 Gao J S, Cao W D, Li D C, et al. Effects of long-term double- rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542–4548

[9] 刘春增, 刘小粉, 李本银, 等. 紫云英配施不同用量化肥对土壤养分、团聚性及水稻产量的影响[J]. 土壤通报, 2013, 44(2): 409–413 Liu C Z, Liu X F, Li B Y, et al. Effects of applying Chinese milk vetch with different amounts of chemical fertilizer on soil nutrients, aggregation and rice yield[J]. Chinese Journal of Soil Science, 2013, 44(2): 409–413

[10] 谢志坚, 徐昌旭, 许政良, 等. 翻压等量紫云英条件下不同化肥用量对土壤养分有效性及水稻产量的影响[J]. 中国土壤与肥料, 2011, (4): 79–82 Xie Z J, Xu C X, Xu Z L, et al. Effects of applying mineral fertilizer reasonably on the availability of soil nutrient and yields of rice under applying equivalent green manure[J]. Soil and Fertilizer Sciences in China, 2011, (4): 79–82

[11] 王建红, 曹凯, 张贤. 紫云英还田配施化肥对单季晚稻养分利用和产量的影响[J]. 土壤学报, 2014, 51(4): 888–896 Wang J H, Cao K, Zhang X. Effects of incorporation of Chinese milk vetch coupled with application of chemical fertilizer on nutrient use efficiency and yield of single- cropping late rice[J]. Acta Pedologica Sinica, 2014, 51(4): 888–896

[12] 侯红乾, 刘秀梅, 刘光荣, 等. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响[J].中国农业科学, 2011, 44(3): 516–523 Hou H Q, Liu X M, Liu G R, et al. Effect of long-term located organic-inorganic fertilizer application on rice yield and soil fertility in red soil area of China[J]. Scientia Agricultura Sinica, 2011, 44(3): 516–523

[13] 徐昌旭, 谢志坚, 许政良, 等. 等量紫云英条件下化肥用量对早稻养分吸收和干物质积累的影响[J].江西农业学报, 2010, 22(10): 13–14 Xu C X, Xie Z J, Xu Z L, et al. Effects of applying mineral fertilizer reasonably on nutrient absorption and dry matter accumulation of early rice under applying equivalent[J]. Acta Agriculturae Jiangxi, 2010, 22(10): 13–14

[14] 李香玲, 冯跃华, 王小艳, 等. 施氮量对机插杂交籼稻干物质生产特性的影响[J]. 广东农业科学, 2015, 42(21): 1–5 Li X L, Feng Y H, Wang X Y, et al. Effects of different nitrogen application amounts on dry matter characteristics of mechanized transplanted hybrid indica[J]. Guangdong Agricultural Sciences, 2015, 42(21): 1–5

[15] 周春火, 潘晓华, 吴建富, 等. 不同复种方式对早稻产量和氮素吸收利用的影响[J].江西农业大学学报, 2013, 35(1): 13–17 Zhou C H, Pan X H, Wu J F, et al. Effects of different cropping patterns on early rice yield and nitrogen absorption and utilization[J]. Acta Agriculturae Universitatis Jiangxiensis, 2013, 35(1): 13–17

[16] 唐海明, 程爱武, 徐一兰, 等. 长期有机无机肥配施对双季稻区水稻干物质积累及产量的影响[J]. 农业现代化研究, 2015, 36(6): 1091–1098 Tang H M, Cheng A W, Xu Y L, et al. Effects of long-term mixed application of organic and inorganic fertilizers on dry matter accumulation and yield of rice in double cropping rice fields[J]. Research of Agricultural Modernization, 2015, 36(6): 1091–1098

[17] 杨长明, 杨林章, 颜廷梅, 等. 不同肥料结构对水稻群体干物质生产及养分吸收分配的影响[J].土壤通报, 2004, 35(2): 199–202 Yang C M, Yang L Z, Yan T M, et al. Effects of nutrient regimes on dry matter production and nutrient uptake and distribution by rice plant[J]. Chinese Journal of Soil Science, 2004, 35(2): 199–202

[18] 姜佰文, 李贺, 王春宏, 等. 有机无机肥料配合施用对水稻干物质积累及运转的影响[J]. 东北农业大学学报, 2013, 44(5): 10–13 Jiang B W, Li H, Wang C H, et al. Effect of mixed application of organic-inorganic fertilizers on dry matter accumulation and translocation of rice[J]. Journal of Northeast Agricultural University, 2013, 44(5): 10–13

[19] 聂俊, 史亮亮, 邱俊荣, 等. 有机肥和化肥配施对抛栽水稻群体干物质生产和产量的影响[J].西南农业学报, 2016, 29(3): 579–583 Nie J, Shi L L, Qiu J R, et al. Effects of organic manure application combined with chemical fertilizers on dry matter production and yield of rice[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(3): 579–583

[20] 唐杉, 王允青, 曹卫东, 等. 不同还田条件下稻田紫云英氮素释放规律及效应[J].安徽农业科学, 2013, 41(7): 2945–2947 Tang S, Wang Y Q, Cao W D, et al. Effects of N-release fromin different applied conditions[J]. Journal of Anhui Agricultural Sciences, 2013, 41(7): 2945–2947

[21] 朱冰. 施氮量对双季稻产量、干物质积累转运及氮素吸收利用的影响[D]. 南昌: 江西农业大学, 2013 Zhu B. Effects of nitrogen application on yield, dry matter- accumulation and remobilization, N-uptake and utilization of double-cropping rice[D]. Nanchang: Jiangxi Agricultural University, 2013

[22] 赵田径, 冯跃华, 韩钢钢, 等. 不同施氮量对免耕移栽杂交水稻干物质积累与运转的影响[J]. 安徽农业科学, 2009, 37(4): 1641–1643 Zhao T J, Feng Y H, Han G G, et al. Effects of different N application rate on the matter accumulation and translocation of transplanted hybrid rice under No-tillage condition[J]. Journal of Anhui Agricultural Sciences, 2009, 37(4): 1641–1643

[23] 杨馨逸, 刘小虎, 韩晓日. 施氮量对不同肥力土壤氮素转化及其利用率的影响[J]. 中国农业科学, 2016, 49(13): 2561–2571 Yang X Y, Liu X H, Han X R. Effect of nitrogen application rates in different fertility soils on soil N transformations and N use efficiency under different fertilization managements[J]. Scientia Agricultura Sinica, 2016, 49(13): 2561–2571

[24] 廖育林, 鲁艳红, 谢坚, 等. 紫云英配施控释氮肥对早稻产量及氮素吸收利用的影响[J]. 水土保持学报, 2015, 29(3): 190–195 Liao Y L, Lu Y H, Xie J, et al. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen nutrient uptake of early rice[J]. Journal of Soil and Water Conservation, 2015, 29(3): 190–195

[25] 要文倩, 秦江涛, 张继光, 等. 江西进贤水田长期施肥模式对水稻养分吸收利用的影响[J].土壤, 2010, 42(3): 467–472 Yao W Q, Qin J T, Zhang J G, et al. Effects of different patterns of fertilization on rice nutrient use in Jinxian County of Jiangxi Province[J]. Soils, 2010, 42(3): 467–472

[26] 商跃凤. 有机无机复混肥对水稻氮素利用率的影响[J].西南农业大学学报, 2001, 23(3): 262–266 Shang Y F. Influence of organic-inorganic compound fertilizers on nitrogen recovery in paddy rice[J]. Journal of Southwest Agricultural University, 2001, 23(3): 262–266

[27] 张小莉, 孟琳, 王秋君, 等. 不同有机无机复混肥对水稻产量和氮素利用率的影响[J]. 应用生态学报, 2009, 20(3): 624–630 Zhang X L, Meng L, Wang Q J, et al. Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 624–630

[28] 李贺. 有机-无机肥料配施对水稻养分积累及氮肥利用效率的研究[D].哈尔滨: 东北农业大学, 2012 Li H. Study of the application of organic-inorganic fertilizer on the nutrient accumulation of rice and nitrogen use efficiency[D]. Harbin: Northeast Agricultural University, 2012

[29] 孟琳. 施用有机-无机肥料对水稻产量和氮肥利用率以及土壤供氮特性的影响[D].南京: 南京农业大学, 2008 Meng L. Effects of application of organic-inorganic mixed fertilizers on the yields of rice grains and nitrogen use efficiency and soil nitrogen supply[D]. Nanjing: Nanjing Agricultural University, 2008

[30] 王光火, 张奇春, 黄昌勇. 提高水稻氮肥利用率、控制氮肥污染的新途径——SSNM[J].浙江大学学报: 农业与生命科学版, 2003, 29(1): 67–70 Wang G H, Zhang Q C, Huang C Y. SSNM — A new approach to increasing fertilizer N use efficiency and reducing N loss from rice fields[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2003, 29(1): 67–70

Effect of combined application of Chinese milk vetch and nitrogen fertilizer on nitrogen uptake, utilization and dry matter accumulation in early rice*

QIAN Chenchen1,2, WANG Shubin1,2, YANG Binjuan1,2, HUANG Guoqin1,2**

(1. Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang 330045, China; 2. Colleges and Universities Union of Ecology in Jiangxi Province, Nanchang 330045, China)

This study evaluated the effect of combined application of Chinese milk vetch (L.) and different levels of nitrogen (N) fertilizer on dry matter accumulation and N use efficiency of early rice in order to determinate the suitable N level under application of Chinese milk vetch. Field treatments were set with four N application levels (90 kg∙hm-2, 120 kg∙hm-2, 150 kg∙hm-2and 180 kg∙hm-2) under 22 500 kg∙hm-2Chinese milk vetch using the winter fallow field with general N fertilizer level (150 kg∙hm-2) as the control. In the experiment, Chinese milk vetch was planted in winter and incorporated into soil in spring before early rice transplant, while N fertilizer was applied as base fertilizer, tillering fertilizer and heading fertilizer with 5︰3︰2 rate. The rice plants were sampled at tillering, booting, heading, filling and maturity stages of the early rice. Dry matter weight and N content were assayed, and the relative indexes were calculated. The results showed that all N application treatments had higher dry matter accumulation than the control. Specifically, the treatments with Chinese milk vetch combined with 90 kg(N)∙hm-2and 120 kg(N)∙hm-2increased dry matter (9.65 t·hm-2and 9.97t·hm-2) respectively by 11.18% and 14.86% compared to the control. Dry matter accumulation increased with duration of growth and peaked twice, one at sowing-tillering stage (19.26%-24.77%) and the other at heading-filling stage (45.23%-52.75%). The combined application of Chinese milk vetch and N fertilizer supported N integration that was beneficial to rice growth. The amounts of N accumulation of early rice treated with Chinese milk vetch and N fertilizer were higher than the control, with increases of 6.95%-18.68%. Among the treatments, that of Chinese milk vetch combined with 90 kg(N)∙hm-2had the highest production efficiency of dry matter and N harvest index, with respective increases of 3.94%–14.08% and 6.65%–14.90% over other treatments. The results indicated that combined application of Chinese milk vetch with 90 kg(N)∙hm-2or 120 kg(N)∙hm-2was satisfactory because they reduced N fertilizer and increased N use efficiency at the same time, which was the ideal fertilization model for the study area.

Chinese milk vetch; Nitrogen fertilizer; Early rice; Dry matter; Nitrogen uptake

10.13930/j.cnki.cjea.160857

S551+.9; S511.3+1

A

1671-3990(2017)04-0563-09

2016-09-24

2016-11-23

Sep. 24, 2016; accepted Nov. 23, 2016

* 江西省研究生创新专项资金项目(YC2013-B030)和国家科技支撑计划课题(2012BAD14B14-01)资助

* The study was supported by the Graduate Innovation Fund of Jiangxi Province (YC2013-B030) and the National Key Technology Research and Development Program of China (2012BAD14B14-01).

** Corresponding author, E-mail: hgqjxnc@sina.com

**通讯作者:黄国勤, 主要研究方向为作物学、生态学、农业发展与区域农业、资源环境与可持续发展等。E-mail: hgqjxnc@sina.com

钱晨晨, 研究方向为农业生态学。E-mail: 827431622@qq.com

钱晨晨, 王淑彬, 杨滨娟, 黄国勤. 紫云英与氮肥配施对早稻干物质生产及氮素吸收利用的影响[J]. 中国生态农业学报, 2017, 25(4): 563-571

Qian C C, Wang S B, Yang B J, Huang G Q. Effect of combined application of Chinese milk vetch and nitrogen fertilizer on nitrogen uptake, utilization and dry matter accumulation in early rice[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 563-571

猜你喜欢

紫云英早稻成熟期
早稻迎丰收
2021年全国早稻总产量2802万吨增长2.7%
2021年全国早稻总产量2802万吨 比2020年增产72.3万吨
宋代早稻若干问题探讨
陈晓明 进入加速期和成熟期,未来十五年是花都滨水新城黄金时代
不同播期和配比对油菜与紫云英混播绿肥生物量及养分积累的影响
那一片紫云英的海
梁永英:盛开在田野的紫云英
不起眼的紫云英
不同成熟期桃品种在衢州市的引种试验