APP下载

非平衡转向平面交叉口交通信号控制方法研究

2017-04-08宋志洪尹少东张博

数字技术与应用 2017年2期

宋志洪++尹少东++张博

摘要:本文主要在前期大量调研的基础上,通过一些交通流变化不规则、非平衡转向的交叉口特征分析,提出对应的交通信号控制设计思路,形成相应的信号控制方法,同时结合实际案例,讲述本文所述的方法应用过程,以及给出评价方法和评价结果,为缓解关键节点交通拥堵瓶颈提供依据。

关键词:非平衡转向;信号控制设计;信号控制方法;仿真评价

中图分类号:U491 文献标识码:A 文章编号:1007-9416(2017)02-0017-04

近年来,我国各大城市机动车保有量的增长,对现有的道路资源合理分配利用提出了极大的挑战,曾经大城市面临的交通拥堵快速的向中小城市蔓延。一些关键节点交通流分配不合理,会引起相邻区域的连锁反应,给城市交通管理造成了不同程度的压力。作为交通系统网络的重要组成部分,城市道路平面交叉口是道路通行能力的瓶颈和交通阻塞及事故的多发地。城市的交通拥堵,大部分是由于交叉口的通行能力不足或没有充分利用造成的,这导致车流中断、事故增多、延误严重。在日本大城市中的机动车在市中心的行车时间约三分之一用于平面交叉口而美国交通事故约有一半以上发生在交叉口[1]。由此可见,对交叉口实行科学的管理与控制是交通控制工程的重要研究课题,是保障交叉口的交通安全和充分发挥交叉口的通行能力的重要措施,是解决城市交通问题的有效途径之一。现阶段,国内外各科研机构研究的交通信号控制理论已基本成熟,也通过一些产学研合作形成了一定的成果,为本文的研究提供了很好的基础。

1 非平衡转向平面交叉口交通特点

非平衡转向平面交叉口,顾名思义,主要体现在两个方面,一是交叉口形式为平面交叉,即平面相交的几条道路组成的交叉口;二是非平衡转向,交通流的组成为非对称式的,受传统相位控制模式的影响,一般通行模式为相位对称式放行,非常影响交叉口整体通行效率。非平衡转向平面交叉口的交通主要有几方面的特点:一是交叉口的整体通行受转向交通的影响较大,如左转交通流不合理调配导致对其他方向交通流通行影响较大;二是交叉口交通流整体为非对称式的,对向交通差异化大,将这样的对向交通并入同一相位不利于整体效率的发挥;三是交叉口的车流通行受非机动车和行人影响较大,同时右转车辆又不会受到控制,信号设置的不协调极大的降低了交叉口车辆的通行效率。

2 平面交叉口信号控制方式

平面交叉口信号控制方式主要包含两种情况,一是对单股或多股交通流限制的信号控制,另外一种是不做限制的情况。对单股或多股交通流限制的模式,主要是指在一些特殊场景下,禁止或分时段禁止某股车流的通行,保障路口通行效率的最大化。传统的信号控制方式主要包含定时控制、感应控制以及自适应控制几种,严格来说,感应控制方式属于自适应控制的一种特殊应用,主要是根据交叉口的实际情况对放行通道的顺序和时间重新设置和组合。

2.1 定时控制

定時控制可以分为两种:单时段定时控制和多时段控制。单时段控制是指每天只用一个事先根据交通历史数据设定好的配时方案;推之,一天按多个时段来采用多种不同的配时方案的控制方法是多时段控制[2]。

2.2 感应控制

为了获取实时的交通流信息,在路面上设置一种检测器,这样能高大大提高信号配时的实时性,这种控制方法叫做感应控制,它一般可以分为半感应控制和全感应控制。

半感应控制主要用于次干道与主干道相交的交叉口上,且主干道交通量大,次干道交通量小、波动大的情况。一般情况下,除非次干道上有车辆和行人要通过而提出要求,否则主干道会一直维持着持续不变的绿灯,在给予次干道绿灯之前,主干道会维持一段最小绿灯时间。

全感应控制:绿灯时间和周期这两大指标会与根据交叉口的检测器检测出来的交通流大小有很大关系,随着它们的变化而变化。一般情况下,相位的顺序都是事先定好的,各个相位的最小与最大绿灯时间也是事先已经定好了的。但是相位可以设置可选,如果在此相位中没有检测到有车辆到达,那么就可以跳过该相位,来运行其他的相位[3]。

2.3 自适应控制

主要包含两种,一种是根据检测器检测参数实时生成信号配时,通过评估系统评估后下发信号控制器执行,另外一种是根据交通参数的变化,生成多种配时方案,根据实时的时段或参数触发机制,完成多种信号控制方案的智能切换。

(1)实时交通信号模拟系统:交通模型贮存在中央计算机内,以综合目标函数(延误时间、停车次数、拥挤程度及尾气排放量等)的预测值为依据,对采集到的实时交通状况信息(流量、速度、占有率等)进行分析,同时对控制区域交通信号配时参数作优化调整,并且为了把交通量图式预测准确性进一步提高,避免控制方的不正常波动,对各项交通信号配时参数的优化调整均小步距且频繁地进行[4]。

(2)方案智能选择切换系统:系统投入运行之后,对交通量等级与配时参数的对照关系进行执行。即针对不同等级的交通量,选择响应最佳配时参数组合,然后将这套事先制定好的交通量与配时参数的对应组合关系储存在中央控制器中。中央控制器再根据输在各个路口的车辆检测器反馈的车流参数,来自动选择合适的配时参数,从而依据所选定配时参数组合对路网交通信号进行实时控制[5]。

3 交叉口信号控制方式选择

交叉口信号控制方式的选择,取决于几个关键条件:一是交叉口类型及渠化特征,二是交通流的组成特征,三是行人和非机动车的干扰特征,四是路口感知设备的应用情况,五是关联路段及交叉口的交通流分布情况。一般而言,主要按照以下几个步骤进行处理:

(1)实地调研,调研对象包含上述的几个条件,交叉口基本特征、交叉口渠化信息、交通流组成、行人和非机动车流量分布、交叉口交通流感知设备信息以及相邻交叉口及路段的交通流分布情况等;

(2)数据分析,通过对调研数据的整理分析,了解行人、非机动车及机动车的流量分布变化情况,以及交通渠化对现状交通的影响;

(3)模型建立,以交叉口通行能力最大化为目标,在考虑关联区域整体通行提升的基础上,充分考虑交叉口渠化、行人和非机动车流量、关联交叉口通行能力变化等影响因子,建立交叉口信号控制模型,并寻求信号控制策略的最优解;

(4)模型校核,通过模型输出参数的数据与现状调查的数据相互比较,校核结果是否符合实际情况;

(5)仿真优化,在校核后的模型基础上,对交叉口渠化、车道功能等进行优化设计,模型中表现为相应的参数信息变化,并进行信号配时优化,利用Vissim仿真工具最后对各优化方案进行评估,确定最优方案。

4 案例分析

以合肥市高新区黄山路与科学大道交叉口为例,阐述平面交叉口信号控制方案设计的具体思路。

黄山路与科学大道交叉口是高新区建成区一个关键交叉口,黄山路为东西走向的一条主干道,科学大道为南北走向的一条主干道,特别在高峰期间流量比较大,是一个特别有代表性的交叉口。如图1所示。

4.1 基础调查

黄山路与科学大道交叉口为十字交叉口,黄山路东西向均为五进四出,进口道均为直行和左转各一条车道,直行三车道;科学大道南北向均为四进四出,进口道均为执行和左转各一条车道,直行两车道,如图2所示。

4.2 数据分析

通过对交叉口各个进口进行实地的调查得到各个进口道的实测交通流量,经过整理原始数据得到各进口的机动车流量。详见图3、4所示。

各进口道平均排队长度如图5所示。

交叉口排队长度比较长的是北进口和南进口早晚高峰直行车道,特别是北进口早高峰和南进口早晚高峰时段拥堵比较严重,东西方向相对来说交通状况良好,只有东进口的直左出道早高峰排队较长。

4.3 模型建立

根据交叉口调研的渠化、交通流量(包括机动车、行人等)、饱和流量和信号配时等基本信息,通过Transyt及Vissim仿真软件建立路网各时段(包括早高峰、晚高峰、平峰及夜间)现状仿真模型,从而寻找路网最优配时方案,如图6所示。

4.4 模型校核及仿真优化

根据不同时间段的流量分析及模型计算结果,形成了三种控制方案:一是将东西向靠近左转车道的一条直行车道设置为可变车道,能够应对高峰期左转流量大,信号周期长,严重影响通行效率的局面;二是高峰期采用两种周期的定时控制方式,可结合实际时段进行调整;三是平峰期和低峰期采用感应控制的方式,可有效减少车辆在路口的等待时间,提高平峰时期的通行效率。早晚高峰信号配时如表1、表2所示。

以延误作为主要评价参数,早晚高峰路网配时优化前后主要参数对比表如表3所示。

由表3可知,早高峰信号配时优化后每辆车平均延误降低了25%,总延误降低了25%,总运行时间降低了12%,平均速度提高了14%。晚高峰信号配时优化后每辆车平均延误降低了6%,总延误降低了6%,总运行时间降低了3%,平均速度提高了3%。综上分析,经过信号优化后车辆延误明显降低,提高了运行效率,从而缓解了交通拥堵,减轻了空气污染。

5 结语

本文提出的非平衡转向平面交叉口交通信号控制方法主要是针对现阶段城市交叉口交通流分布不均等问题,从交叉口通行方式分配、参数分析、模型优化及仿真调整等几个角度,达到交叉口通行效率最优的效果,提高交叉口通行能力,有效减少延误,对缓解节点交叉口擁堵起到关键作用。

参考文献

[1]管再保.平面交叉口交通控制研究[D].成都:西南交通大学,2004.

[2]诸云.基于交通流模式的交叉口动态信号控制研究[D].南京:南京理工大学,2009.

[3]孙晴.城市平面交叉口信号控制的研究[D].长沙:长沙理工大学,2009.

[4]刘新华.交叉口交通组织优化方法研究[D].西安:长安大学,2006.

[5]钱蓓蕾.交叉口混合交通综合性能评价研究[D].杭州:浙江大学,2006.