心脏骤停后脑复苏部分评价指标的研究进展
2017-03-11川综述追审校
何 川综述 余 追审校
心脏骤停后脑复苏部分评价指标的研究进展
何 川综述 余 追*审校
心脏骤停(CA)是常见急危重症之一,随着心肺复苏(CPR)技术的普及,CA患者自主循环恢复(ROSC)率已大为提高,脑复苏成为CPR的终极目标。目前,用于评估脑复苏的指标很多,包括血流动力学指标、脑水肿指标、脑损伤标志物和炎性指标等,尽管其应用研究不断丰富和深入,但尚无确定的遴选标准和统一的应用规范。本文综述相关文献,优选部分指标,介绍其研究动态和进展,为临床脑复苏评价提供借鉴和参考。
心脏骤停; 脑复苏; 评价指标
心脏骤停(Cardiac Arrest, CA)是常见急危重症之一,是大约50%心血管疾病的死亡原因和50%未明确诊断的心血管疾病的首发临床表现[1]。随着规范化心肺复苏(Cardiopulmonary Resuscitation,CPR)技术的普及,自主循环恢复(Return of Spontaneous Circulation,ROSC)率大为提高,但最终的治疗结局还是令人沮丧。根据2015年美国心脏协会(American Heart Association,AHA)发布的报告,美国每年有32.62万人发生院前心脏骤停(Out-of-Hospital Cardiac Arrest,OHCA),其中仅有10.6%的患者通过住院治疗存活出院,而只有8.3%的患者出院时保持较好的神经系统功能(CPC 1级或2级)[2]。我国尚无这样的大数据,据一项针对北京城区的CA调查结果显示,OHCA存活出院率只有1.3%,良好神经系统功能结局只有1%[3]。因此,提高CA患者的生存率和良好神经功能结局是CPR追求的终极目标。过去的五十多年,研究者们致力于寻找提高CA后神经功能结局的各种疗法,在此过程中,多种评价指标或标准被应用于评估各疗法疗效,但尚不规范。本文选择部分评价指标,对其研究进展进行综述。
1 CPC分级(Cerebral Performance Categories)
CPC分级被广泛用于评估CA后的神经功能,包含5个等级:CPC 1级,脑功能良好:意识存在、警觉,能正常工作和生活;可能有轻微心理或神经功能缺陷(轻度语言障碍、轻瘫或轻微脑神经异常)。CPC 2级,中度脑残疾:有意识,在有保护的环境下,能胜任部分工作或能独立进行日常生活活动(如穿
衣、乘坐公共交通、食品准备);该级病人可能有半身不遂、癫痫、共济失调、构语障碍、言语障碍或永久性记忆或精神变化。CPC 3级,严重脑残疾:意识存在,但因大脑功能受损,病人需依靠其他人(机构或家庭成员)帮助进行日常生活活动,至少存在认知限制。该级病人脑功能异常范围较广,能行走但有严重记忆混乱或者痴呆、不能独立生存,全身瘫痪只能用眼睛交流,如同闭锁综合症。CPC 4级,昏迷/植物状态: 无意识,对环境无感知,缺乏认知; 与周围环境无语言和/或心理交流。CPC 5级,脑死亡: 以传统的标准认证为脑死亡或死亡。
有研究表明,CPC分级可独立预测OHCA病人复苏后的长期预后,患者1年、5年的生存率为CPC 1级> CPC 2级>CPC 3级> CPC 4级> CPC 5级[4]。对于CA后接受目标温度管理(Targeted Temperature Management,TTM)的病人,CPC评分与长期生存率有关,CPC 1级患者长期生存率最高,其次是CPC 2级和CPC 3级,CPC 4级长期生存率最低,CPC 3级、CPC 4级与较差长期预后有关[5],但是存在一个问题,温度变量会对该类患者的CPC评分产生影响,延迟开始实施低温的时间或延迟达到目标温度的时间,都会使较差神经功能结局的发生率增加[6]。但该结论还有待进一步考证。
2 血流动力学指标
CA患者ROSC后脑血流自主调节减弱,并由于CA/CPR激活凝血系统,抗凝和纤溶作用减弱,诱导微血栓形成和纤维蛋白沉积,造成脑再灌注紊乱,如出现无复流现象等,进一步减少ROSC后的脑血流[7],会严重影响病人当前状态和预后,包括生存率。实践已经证明亚低温治疗(32-34℃)有部分抗凝效应[8],可逆转ROSC后的高凝状态而加速脑微循环血流[9],或通过影响凝血-抗凝水平的平衡,降低微循环中的纤维蛋白形成,继而提高脑微循环血流量[7]。所以,在CA患者脑复苏过程中实时监测凝血/纤溶指标的动态变化有利于防治血栓形成,提高脑血流。但有研究者以非侵入性旁流暗场成像技术(Sidestream Dark Field,SDF)检测口腔微循环结果后却认为,亚低温治疗对微循环血流没有影响,甚或减少初始期血流[10, 11]。后者与前者结果产生分歧的原因可能与后者所用技术易受环境或监测对象状态、处理因素的影响有关;或者口腔微循环与脑微循环并不存在明显的一致性。
通过MRI检查所获CA复苏后全脑或局部脑血流灌注(Cerebral Blood Flow,CBF)和水分弥散(Apparent Diffusion Coefficient,ADC)指标可用于预测CA预后,CA预后较差者,ADC减低,CBF增加[12],而CBF受平均动脉压(mean arterial pressure,MAP)变化的影响[13],只有维持较高水平的MAP才能保证脑血流灌注。但又有研究认为,CA后低温治疗过程中,高水平MAP与完好神经功能结局并无关系[14];最近的一项临床研究结果也不支持较高水平MAP与临床结局存在因果关系的结论,因为在去除研究对象的异质性因素后,虽然MAP越高,病人生存率越高,但是严重神经功能障碍的发生率并未降低[15]。因此,对MAP指标作用的争议可能有待大样本资料进行验证。
3 脑水肿指标
CA后由于脑组织缺血缺氧,三磷酸腺苷(ATP)耗竭,细胞膜离子泵功能失调,使Na+、水积存于脑细胞内,以及K+在细胞间隙内积聚,引起细胞膜去极化,Na+、Ca2+和水进一步内流,导致脑细胞水肿。电压门控钙通道的开放,使大量Ca2+进入细胞质,造成谷氨酸释放于细胞间隙,大量蓄积的兴奋性谷氨酸长时间与N-甲基-D-天冬氨酸(NMDA)受体结合,进一步促进Ca2+、Na+内流;α-氨基-3-羟基-5-甲基-4-异(噁)唑丙酸受体(AMPA)受体激活Na+泵,致Na+涌入细胞内, 进一步加重细胞水肿。CA/CPR后脑水肿会导致病人昏迷甚至脑死亡,所以必须严密监测脑水肿以保证病人生命安全。目前临床用于监测脑水肿的指标有颅内压(Intracranial Pressure,ICP)和脑组织含水量测定。ICP的测定方法有创伤性检查腰椎穿刺和非创伤性经颅多普勒检查、视神经鞘或瞳孔直径测量等。临床常用腰椎穿刺,其准确性较高,但易发生感染或出血;非创伤性检查准确性较差,在临床上应用不多[16]。脑组织的含水量测定常用动物来进行,其结果对临床具有一定的参考价值,计算方法为:脑组织含水量=(湿重-干重)/湿重×100%[17-20]。临床上常用头颅CT、MRI观察患者有无脑水肿。脑CT表现为:大脑沟回消失,灰质/白质界限模糊。有临床研究发现OHCA病人大脑灰质/白质区分度减低,而且不论是ROSC早期(<24h)还是晚期(>24h)CT结果均可独立预测神经功能结局[21]。如果CA 24h后灰质/白质比率(Gray Matter to White Matter Attenuation
ratio,GMR)<1.2,示神经功能结局较差,其敏感度为0.56-0.62,特异性为0.63-0.81,预测能力中等;若以GWR<1.1进行预测,其特异性提高为0.96-1.00,但敏感性降低(0.14-0.20)[22]。脑MRI表现为:T1W1低信号,T2W1高信号,脑回肿胀、模糊,脑沟变窄。利用弥散加权成像(diffusion-weighted imaging,DWI)计算表观弥散系数(ADC)来反映脑组织中水分子的随机运动,可对脑水肿的发展情况进行动态监测:ADC值降低表明有脑水肿形成[23]。这一方法可以消除由于临床医生背景知识及对疾病状态的个人认知和理解不同而在对CT、MRI结果判读时带有主观性导致的诊断偏差,有助于提高诊断的准确性。
4 脑损伤标志物神经元特异性烯醇化酶(NSE)和S100B
NSE主要存在于神经元和神经内分泌细胞中,S100B主要由星形胶质细胞产生,并作用于神经元及其周围的生长环境。CA造成大脑缺血缺氧,神经元和星形胶质细胞受到损伤,细胞膜的完整性遭到破坏,致NSE和S100B被释放到脑脊液中;同时缺血缺氧造成血-脑屏障的通透性增高,又使NSE和S100B通过血脑屏障进入血液,引起血液中二者浓度迅速升高。脑损伤程度越重,两者释放越多,血液浓度越高。因此血液NSE和S100B水平均可作为反映或评估脑损伤程度的生化标志物,用于评估脑复苏效果及预后。有研究[24]在对非创伤性心脏骤停ROSC昏迷病人进行24h亚低温(32-34℃)治疗后的受试者工作特征(ROC)曲线结果表明,在其所观察的几种标志物中,C-反应蛋白(CRP)的灵敏度和特异性均较差,诊断价值不大,红血球沉降率(ESR)更无诊断意义,而ROSC后24h S100B血清水平和48h NSE血清水平可高度预测CA后亚低温治疗对神经功能结局的影响,从而肯定S100B和NSE相较于其它指标预测脑复苏结局有明显优势。胶质纤维酸性蛋白(GFAP)在预测CA后的脑复苏结局方面是一种相对较新的生化标记物,CA病人神经功能预后较差者,其血清GFAP水平升高,但敏感性不如S100B和NSE高,而且将三者联合检测分析也无益于对脑复苏结局预测能力的提高[25]。由于数据不完整或证据不充分,许多指南并不建议或拒绝独立应用生化标志物水平评估CA神经功能预后。较多研究将生化标志物测定与脑电生理检查结合分析获得较好临床预测效果,如Stammet等[26]联合应用S100B与脑电双频指数(BIS)的分析结果使其预测值大为增加,ROC曲线下面积(AUC)高达0.95,故推荐将生化标志物与电生理共同检测用于预测CA神经功能结局;Calderon等[27]也认同上述观点,认为临床数据与实验室指标的整合能更好地解释生化标记物数值的差异性,对于评估CA神经功能结局更为可靠。另有研究发现,CA/CPR或ROSC后,S100B浓度高峰的时间要早于NSE[28, 29],因而倾向于S100B对心脏骤停后亚低温治疗脑复苏结局有更高的预测价值[29],但动物实验结果并不能佐证这一结论,因为猪心脏骤停后ROSC 24h,NSE和S100B水平均达到高峰,而且在结局预测方面NSE优于S100B,这一结果还与神经功能缺陷评分(NDS)呈显著正相关[30]。此外,还有一种观点认为,S100B和NSE两种蛋白水平确实与神经预后存在联系,但尚无充足理由或证据将其视为预测神经功能结局的指标,建议谨慎使用[31]。
5 炎性指标
CA导致大脑缺血缺氧,CPR恢复大脑血氧供应,进一步造成脑细胞损伤和死亡,其病理生理过程复杂,炎症反应是不容忽视的机制之一[32]。大脑发生缺血性损伤数小时之后,炎性因子白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)及趋化因子水平显著增加,这些介质可诱导黏附分子的表达,并促进黏附分子对内皮细胞的黏附及循环中中性粒细胞、单核细胞跨血管内皮迁移,使白细胞、血小板聚集在毛细血管内,进一步降低脑血流;同时,这些介质还可渗出至脑实质内,释放神经毒性物质,如促炎因子、趋化因子和氧/氮自由基等,直接损伤神经元;以及小胶质细胞被激活,不断加重炎症反应和组织损伤[33]。给予这种病患IL-6受体抑制剂SC144、TNF-α受体抑制剂ETAN,结果发现其IL-6、TNF-α合成抑制,细胞凋亡减少,CA后24h生存率增加[34]。说明炎症反应可能导致脑损伤,炎性因子可以作为评估CA/CPR后脑损伤指标,预测神经功能结局。但炎性因子在CA/CPR后的反应机制或其潜在的分子通路尚未明确。近年有报道,炎性因子TNF-α依赖于Toll样受体4(TLR4)参与CA/CPR引发的炎症反应[35],高迁移率族蛋白1(HMGB1)作为TLR通路的配体之一,在CA后脑保护中也有重要作用。有研究[26]表明,CA患者HMGB1蛋白和IL-1β、TNF-α表达同时增加,可阻断HMGB1活化,能抑制炎性因子表达,使CA所致神经功能损伤得以部分逆转[36]。由此提示,HMGB1-TLR-炎性因子通路可能是炎症反应的潜在分子通路,而有效下调该通路分子水平或可成为治疗CA/CPR所致大脑缺血再灌注损伤的新策略。此外,小动物实验表明,H2S吸入可通过阻断核因子-κB(NF-κB)介导的炎症通路改善神经功能结局,发挥脑保护作用[37],但将其应用于临床或大动物,结果存疑。
6 结语
CA/CPR后脑复苏的病理生理变化较复杂,而用于评判改善神经功能结局疗法的指标也尚未达成共识,故需要遴选客观指标对各疗法进行科学分析和效果论证。本文综述了几类用于评估脑复苏疗效指标的应用和进展,提示上述五类指标用于评估脑复苏疗效参考价值较大,但仍然存在部分争议。有必要对这些指标进行优化并筛选,以便更好地用于评价脑复苏疗效的价值。
◀
本文作者简介:
何 川(1989-)女,汉族,硕士研究生,研究方向为心脏骤停后的脑复苏
1 Patil KD, Halperin HR, Becker LB. Cardiac arrest: resuscitation and reperfusion[J]. Circ Res,2015,116(12): 2 041-2 049.
2 Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association[J]. Circulation,2015,131(4): e29-322.
3 Shao F, Li CS, Liang LR, et al. Outcome of out-of-hospital cardiac arrests in Beijing, China[J]. Resuscitation,2014,85(11): 1 411-1 417.
4 Phelps R, Dumas F, Maynard C, et al. Cerebral performance category and long-term prognosis following out-of-hospital cardiac arrest[J]. Crit Care Med,2013,41(5): 1 252-1 257.
5 Hsu CH, Li J, Cinousis MJ, et al. Cerebral performance category at hospital discharge predicts long-term survival of cardiac arrest survivors receiving targeted temperature management[J]. Crit Care Med,2014,42(12): 2 575-2 581.
6 Sendelbach S, Hearst MO, Johnson PJ, et al. Effects of variation in temperature management on cerebral performance category scores in patients who received therapeutic hypothermia post cardiac arrest[J]. Resuscitation,2012,83(7): 829-834.
7 Chun-Lin H, Jie W, Xiao-Xing L, et al. Effects of therapeutic hypothermia on coagulopathy and microcirculation after cardiopulmonary resuscitation in rabbits[J]. Am J Emerg Med,2011,29(9): 1 103-1 110.
8 Gong P, Zhang MY, Zhao H, et al. Effect of mild hypothermia on the coagulation-fibrinolysis system and physiological anticoagulants after cardiopulmonary resuscitation in a porcine model[J]. PLoS One,2013,8(6): e67476.
9 Wada T, Gando S, Mizugaki A, et al. Coagulofibrinolytic changes in patients with disseminated intravascular coagulation associated with post-cardiac arrest syndrome--fibrinolytic shutdown and insufficient activation of fibrinolysis lead to organ dysfunction[J]. Thromb Res,2013,132(1): e64-69.
10 Buijs EA, Verboom EM, Top AP, et al. Early microcirculatory impairment during therapeutic hypothermia is associated with poor outcome in post-cardiac arrest children: a prospective observational cohort study[J]. Resuscitation,2014,85(3): 397-404.
11 Koopmans M, Kuiper MA, Endeman H, et al. Microcirculatory perfusion and vascular reactivity are altered in post cardiac arrest patients, irrespective of target temperature management to 33℃ vs 36℃[J]. Resuscitation,2015,86(S1): 14-18.
12 Manchester LC, Lee V, Schmithorst V, et al. Global and regional derangements of cerebral blood flow and diffusion magnetic resonance imaging after pediatric cardiac arrest[J]. J Pediatr,2016,169: 28-35.
13 He J, Lu H, Deng R, et al. Real-time monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest in rat[J]. Conf Proc IEEE Eng Med Biol Soc,2015,2015: 6 971-6 974.
14 Young MN, Hollenbeck RD, Pollock JS, et al. Higher achieved mean arterial pressure during therapeutic hypothermia is not associated with neurologically intact survival following cardiac arrest[J]. Resuscitation,2015,88(22): 158-164.
15 Russo JJ, James TE, Hibbert B, et al. Impact of mean arterial pressure on clinical outcomes in comatose survivors of out-of-hospital cardiac arrest: Insights from the University of Ottawa Heart Institute Regional Cardiac Arrest Registry (CAPITAL-CARe) [J]. Resuscitation,2017,113: 27-32.
16 Reis C, Akyol O, Araujo C, et al. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury[J]. Int J Mol Sci,2017,18(1):129.
17 Nakayama S, Amiry-Moghaddam M, Ottersen OP, et al. Conivaptan, a selective arginine vasopressin V1a and V2 receptor antagonist attenuates global cerebral edema following experimental cardiac arrest via perivascular pool of aquaporin-4[J]. Neurocrit Care,2016,24(2): 273-282.
18 张 洁, 罗序睿, 陈耿靖, 等. 丹参酮ⅡA对心肺复苏大鼠脑水通道蛋白4表达及脑水肿的影响[J]. 中国医药,2015,10(8): 1 133-1 136.
19 Akdemir G, Ratelade J, Asavapanumas N, et al. Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion[J]. Neurosci Lett,2014,574: 70-75.
20 Geng Y, Li E, Mu Q, et al. Hydrogen sulfide inhalation decreases early blood-brain barrier permeability and brain edema induced by cardiac arrest and resuscitation[J]. J Cereb Blood Flow Metab,2015,35(3): 494-500.
22 Cristia C, Ho ML, Levy S, et al. The association between a quantitative computed tomography (CT) measurement of cerebral edema and outcomes in post-cardiac arrest:a validation study[J]. Resuscitation,2014,85(10): 1 348-1 353.
23 Tang ZR, Li CS, Zhao H, et al. Effects of hypothermia on brain injury assessed by magnetic resonance imaging after cardiopulmonary resuscitation in a porcine model of cardiac arrest[J]. Am J Emerg Med,2013,31(1): 86-93.
24 Choi S, Park K, Ryu S, et al. Use of S-100B, NSE, CRP and ESR to predict neurological outcomes in patients with return of spontaneous circulation and treated with hypothermia[J]. Emerg Med J,2016,33(10): 690-695.
25 Larsson IM, Wallin E, Kristofferzon ML, et al. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome[J]. Resuscitation,2014,85(12): 1 654-1 661.
26 Stammet P, Wagner DR, Gilson G, et al. Modeling serum level of s100β and bispectral index to predict outcome after cardiac arrest[J]. J Am Coll Cardiol,2013,62(9): 851-858.
27 Calderon LM, Guyette FX, Doshi AA, et al. Combining NSE and S100B with clinical examination findings to predict survival after resuscitation from cardiac arrest[J]. Resuscitation,2014,85(8): 1 025-1 029.
28 Lin JY, Zhang MW, Wang JG, et al. Hydrogen sulfide improves neural function in rats following cardiopulmonary resuscitation[J]. Exp Ther Med,2016,11(2): 577-587.
29 Mrtberg E, Zetterberg H, Nordmark J, et al. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment[J]. Resuscitation,2011, 82(1): 26-31.
30 Zhao H, Li CS, Gong P, et al. Molecular mechanisms of therapeutic hypothermia on neurological function in a swine model of cardiopulmonary resuscitation[J]. Resuscitation,2012,83(7): 913-920.
31 Zellner T, Gärtner R, Schopohl J, et al. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest[J]. Resuscitation,2013,84(10): 1 382-1 386.
32 Xiang Y, Zhao H, Wang J, et al. Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation[J]. Biomed Rep,2016,5(1): 11-17.
33 Amantea D, Nappi G, Bernardi G, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators[J]. FEBS J,2009,276(1): 13-26.
34 Xing J, Lu J. HIF-1α activation attenuates IL-6 and TNF-α pathways in hippocampus of rats following transient global ischemia[J]. Cell Physiol Biochem,2016,39(2): 511-520.
35 Xu L, Zhang Q, Zhang QS, et al. Improved survival and neurological outcomes after cardiopulmonary resuscitation in toll-like receptor 4-mutant mice[J]. Chin Med J (Engl),2015,128(19): 2 646-2 651.
36 Xu M, Zhou GM, Wang LH, et al. Inhibiting high-mobility group box 1 (HMGB1) attenuates inflammatory cytokine expression and neurological deficit in ischemic brain injury following cardiac arrest in rats[J]. Inflammation,2016,39(4): 1 594-1 602.
37 Wei X, Zhang B, Zhang Y, et al. Hydrogen sulfide inhalation improves neurological outcome via NF-κB-mediated inflammatory pathway in a rat model of cardiac arrest and resuscitation[J]. Cell Physiol Biochem,2015,36(4): 1 527-1 538.
欢迎订阅 欢迎投稿
通讯地址:430060 湖北省武汉市张之洞路9号《微循环学杂志》编辑部 电话:027-88075389;
18064018058 传真:027-88075389 E-mail:micch@sina.com;308903786@qq.com
网址:http://WXHX.chinajournal.net.cn
Advances of Evaluation Indexes on Cerebral Resuscitation for Cardiac Arrest
HE Chuan, YU Zhui*
Department of Critical Care Medicine,Renmin Hospital of Wuhan University,Wuhan 430060,China;*
Cardiac arrest(CA) is one of the common severe acute diseases. With the popularity of cardiopulmonary resuscitation (CPR) for cardiac arrest , the rate of return of spontaneous circulation(ROSC) has been greatly improved,and cerebral resuscitation should be the ultimate goal of CPR. At present, various indicators are adopted to evaluate brain resuscitation,including hemodynamic parameters,brain edema indexes,brain injury indicators and inflammation indexes,despite rich and furher research,it still lack definitive selection standard and uniform application criteria,therefore,the paper will review relevant literature and regrade part indexes to introduce their research trends and progress so as to offer reference for clinical assessment.
Cardiac arrest; Cerebral resuscitation; Evaluation indexes
武汉大学人民医院重症医学科,武汉 430060;*
,E-mail:doctoryuzhui@163.com
本文2017-02-13收到,2017-03-26修回
R655.974
A
1005-1740(2017)02-0071-05