慢性肾脏病-矿物质和骨异常的药物治疗进展
2017-03-07王慧彭佑铭
王慧 彭佑铭
·综述·
慢性肾脏病-矿物质和骨异常的药物治疗进展
王慧 彭佑铭
2005年改善全球肾脏病预后组织(Kidney Disease:Improving Global Outcomes,KDIGO)将慢性肾脏病-矿物质骨异常(chronic kidney disease-mineral and bone disorders,CKD-MBD)定义为:①生化改变:钙、磷、甲状旁腺素(parathyroid hormone,PTH)和维生素D代谢异常;②肾性骨病:骨的转换、矿化、容量、线性生长或强度的异常;③异位钙化:血管或其他软组织的钙化。CKD-MBD这3个部分相互影响,相互制约,治疗CKD-MBD需要一个整体的方案,既要维持正常的骨转运又要防止血管钙化。目前治疗CKD-MBD的主要措施有:控制高磷血症,维持血钙;抗甲状旁腺功能亢进;预防和治疗血管钙化。本文旨在探讨CKD-MBD新的药理进展,最近开发的药物和治疗的趋势。
一、高磷血症的治疗
肾脏清除磷的能力下降是慢性肾衰竭患者出现高磷血症最根本的原因。高磷血症的有害影响从亚临床动脉粥样硬化/动脉粥样硬化到促进慢性肾脏病(chronic kidney disease,CKD)的进展甚至出现死亡[1-4]。有研究报道指出,即使血清磷在正常范围,也可以导致心血管疾病或死亡[5]。因此,当出现高磷血症时应尽早正确的限制磷饮食,同时使用磷结合剂。过去严格限制磷的饮食是控制血磷的主要治疗手段,但这也带来了诸多问题。严格限制蛋白质和磷的饮食所导致的营养不良,可能引起更高的病死率风险[6]。所以,药物是降低血磷的主要治疗。目前的降磷药物主要有:磷结合剂、钠磷协同转运体(sodium(Na)-dependent P co-transporter Npt)抑制剂,成纤维细胞生长因子23(fibroblast growth factor-23, FGF-23)抑制剂。
1.磷结合剂 有大量的流行病学证据表明,磷结合剂对透析患者降低血磷浓度有益[7-9],但是现在还没有一个随机对照试验明确的证明有任何一种磷结合剂可以降低患者的相关病死率[10]。
(1)不含钙磷结合剂(司维拉姆和碳酸镧):司维拉姆和碳酸镧是目前临床上最常用的不含钙磷结合剂。司维拉姆或碳酸镧和含钙的磷结合剂相比,在短期研究中显示对骨组织没有不良反应,也不容易出现高血钙,持续低水平的血清PTH和无力性骨病(adynamic bone disease,ABD)[11-13]。此外,在一些临床随机对照试验和最近的荟萃分析中显示不含钙的磷结合剂可以延缓血管钙化(cardiovascular calcification,CVC)的进展[14],但能否改善患者的最终预后仍不清楚。此外,研究并没能明确不含钙的磷结合剂在本质上是否比含钙的磷结合剂更有益,但不含钙的磷结合剂还存在其他优势,这可能可以提高生存率。司维拉姆降脂性能是明确的,其还可能在炎症、氧化应激、血管内皮功能障碍、动脉粥样硬化、多种尿毒症毒素、尿酸、糖化血红蛋白水平与晚期糖基化终末产物、细菌脂多糖、Wnt/β-catenin信号通路与能源相关的激素(如瘦素)等方面有作用。作为一个局限于肠腔的磷结合剂,司维拉姆的这些作用凸显了CKD患者肠道通路的重要性,为CKD及其并发症开阔了新的治疗思路[15]。
(2)含镁的磷结合剂:低镁血症在CKD患者中也很常见,并且与心血管疾病高风险率和高病死率相关[16]。实验研究表明,镁通过对血管壁直接和间接的作用抑制CVC[17]。尽管一些研究结果显示,CKD患者补充镁是有益的,特别是对心血管疾病的发病率和病死率,但补充的时期尚未明确[18-19]。血清镁水平还可以显著改变与血液透析患者高磷血症相关的病死率风险。血清磷水平≥6 mg/dl的患者中心血管死亡风险随着血清镁的水平增加而显着减少[20]。现在镁联合低剂量的钙被认为是一种经济适用的治疗透析患者高磷血症方法。除了能避免ABD、高钙血症或持续低PTH水平,还降低血清FGF23水平[21]。
(3)含铁的磷结合剂:一项对含铁的磷结合剂在治疗透析患者高磷血症中的作用和安全性的荟萃分析[18],含铁的磷结合剂的疗效与司维拉姆相当,而且耐受性相对良好,但缺乏司维拉姆的多效性作用[22]。含铁的磷结合剂还可以降低FGF23,预示着铁与FGF23之间可能存在某种联系[23]。自2014年8月起,sucroferric氢氧化物(SFe-OOH,PA21,商品名是Velphoro)被批准用于慢性肾脏病血液透析或腹膜透析的成年患者。SFe-OOH难溶于水并具有优良的磷结合力,其药品价格低而且不会造成铁潴留,胃肠道相关的不良反应少。此外,SFE-OOH与镧一样,不影响脂溶性维生素(维生素如A、D、E、K)的吸收和生物活性[24]。另一个含铁的磷结合剂柠檬酸铁,2014年美国食品药品监督管理局批准柠檬酸铁用于治疗CKD患者的高磷血症。柠檬酸铁降磷作用也不次于碳酸司维拉姆和(或)醋酸钙[25-26]。此外,该药物提供了一个显著量的铁,降CKD患者静脉注射铁的需求和长期的促红细胞生成素的剂量,尤其适用于需要补充铁的患者[27]。
(4)其他新的肠道磷结合剂:考来替兰是一种新的非金属不含钙的阴离子交换树脂,最开始在日本被用于治疗高脂血症。和司维拉姆一样,考来替兰在肠道结合磷和胆汁酸,可以显著降低血清磷、钙磷乘积,减少甲状旁腺素和降低低密度脂蛋白胆固醇水平[28]。比沙洛姆是一种胺基磷结合剂,2012年在日本上市,已被证明治疗高磷血症有效,与司维拉姆相比,其胃肠道不良反应更少,并且不增高患者代谢性酸中毒的风险[29]。
2.钠磷协同转运体抑制剂 Npt是体内无机磷的一种重要转运蛋白,维持矿物质和骨代谢稳定的成骨细胞和破骨细胞表面都有Npt表达,并承担着无机磷的转运。控制血清磷水平的替代机制是通过抑制肠型NaPi-II型协同转运蛋白直接阻断磷的吸收。众所周知,限制磷的饮食和所有肠道磷结合剂都可上调肠道npt2b的表达。因此,当恢复磷负荷饮食或是磷结合剂治疗的间断时期,肠道磷的吸收会增强[30],这也部分解释了许多患者血清磷水平控制不佳的原因。因此,npt2b抑制剂不仅可以成为一个重要降磷药物,还有可能成为增强其他磷结合剂疗效的辅助药物。烟酰胺是烟酸在体内的代谢衍生物,可通过阻断肠npt2b直接抑制磷的吸收[31]。烟酰胺可能可以减少肾脏转运蛋白NPT2a和NPT2c的表达。因此,烟酰胺可能是一个有效的替代或辅助治疗CKD患者的高磷血症药物。腹泻和血小板减少是其最常见的不良反应。烟酰胺不但减少饮食中磷的吸收,降低血清磷水平,还能降低FGF23水平,目前一个以降低血清磷和FGF23水平为目标的新的治疗方法正在研究测试[32]。其他肠道磷转运抑制剂正在进行临床前研究,asp3325是目前正在进行的对透析患者高磷血症治疗的I期研究。
3.FGF23受体抑制剂(FGFR) FGF23增高(或Klotho减少)与高血磷有关。磷失衡的后果要远早于血清磷水平升高[33]。高水平的FGF23不仅可反映出磷的不平衡,也通过Klotho独立信号路径直接参与左室肥厚[34]。磷对心血管系统的不良影响可以表明,未来的干预措施将需要同时把磷和FGF23和(或)减少Klotho作为靶点来减少心血管病死率。磷结合剂能减少肠道磷的吸收,但并不能持续抑制FGF23,提示可能有其他因素比血清磷更能影响CKD患者FGF23水平[35]。为减少高血磷和高FGF23水平的有害影响,理论上是可以通过直接阻断FGF23作用(抗-FGF23 抗体或FGF23受体阻滞剂)来实现的。直接靶向抑制FGF23的生物制剂还在开发。用抗-FGF23抗体可以治疗动物的CKD相关高磷血症。然而,抗-FGF23抗体剂量依赖性血清钙、磷水平,这一点可能会导致相关的病死率和主动脉钙化增加[36]。但抗-FGF23抗体和受体阻滞剂还是可以考虑结合降磷治疗或者应用于无明显残余肾功能的终末期肾病患者。
血清磷水平可能无法真实地反映磷的平衡,磷失衡的不良后果在血清磷水平高于正常范围内之前就已经出现了。虽然早期治疗似乎是最理想的方法,但对于未进行透析治疗且不存在高磷血症和高FGF23的患者是否应给予降磷治疗仍不清楚。在CKD的不同阶段,血磷需维持在什么范围才有利于改善预后目前也没有一个明确的答案。
二、继发性甲状旁腺功能亢进(shyperparathyroidism, SHPT)治疗
SHPT是CKD的常见并发症,它不仅引起骨骼疾病,降低生活质量而且增加CKD 患者的病死率。理想的血清PTH靶水平在当前引起激烈的争论。KDIGO指南建议,在CKD 5和5D期,血清PTH水平应维持在正常上限的2倍和9倍之间[37],这是因为低于PTH正常上限2倍有可能引起肾性骨病。PTH超过9倍正常上限必须避免,因为可能出现极高的病死率。事实上,在KDIGO指南建议的PTH范围是否太宽也一直备受争议,有学者担心PTH范围太宽可能会导致甲状旁腺功能过度抑制,促进甲状旁腺肿瘤进展,降低治疗的效果[38]。原有的指南只使用血清PTH水平来预测骨转运和(或)生存率,其灵敏度和特异性是有缺陷的,其他因素如钙、磷、CVC也应考虑到。碱性磷酸酶活性的监测结合PTH可能有助于增加特异性[39]。
为了抑制甲状旁腺功能亢进,新的活性维生素D及其类似物和钙敏感受体激动剂已经被应用,它们能更早、更有效的控制CKD-MBD相关生化指标。实验和临床研究也表明,一些抗甲状旁腺药物可能延缓CVC进程,从而可能改善生存率。这些药物还可以减少甲状旁腺切除术的数量[40]。
1.维生素D衍生物 机体内源性活性维生素D是由麦角骨醇(维生素D2前体)或7-去氢胆甾醇(维生素D3前体)在紫外线的作用下转化为麦角骨化醇(维生素D2)或胆钙化醇(维生素D3),然后再分别在肝脏25-羟化酶及肾脏1-a羟化酶催化下形成的1,25-二羟麦角骨化醇。有报道指出,普通人群和透析患者中循环骨化二醇的水平与生存率之间存在着密切的关系[41]。目前大多数指南建议对CKD患者测量血清骨化二醇的水平[42-43]。CKD患者由于肾功能的不断下降,1-a羟化酶合成骨化三醇受到限制,最终导致SHPT。所以,骨化三醇一直是治疗甲状旁腺功能亢进的经典药物。已有实验表明,大剂量的骨化三醇可以增加高磷饮食饲养的尿毒症老鼠肠道的钙吸收,这是因为骨化三醇促进了钙结合蛋白的表达,从而引起高血钙,加重高磷血症,导致异位钙化,最终导致心血管疾病风险及病死率增加[44]。为了克服骨化三醇的这些缺点,多年来人们一直在寻找既能治疗甲状旁腺功能亢进,又能不引起高钙血症的维生素D衍生物。选择性维生素D类似物例如帕立骨化醇或马沙骨化醇可以选择性作用于甲状旁腺和肠道,减弱肠道钙转运蛋白的刺激,从而较少引起高钙血症[45]。
实验研究显示,帕立骨化醇可以减少对血管的影响[46]。Kong等[47]研究单独使用氯沙坦、帕立骨化醇、骨化醇,或氯沙坦和帕立骨化醇联合,或氯沙坦和度骨化醇联合,对左心室肥厚的进展的影响。超声心动图显示单独使用氯沙坦、帕立骨化醇,或度骨化醇可以减少65%~80%的左心室肥厚,联合使用几乎完全预防左心室肥大。这些数据表明,维生素D类似物有较强的抗心肌肥厚作用,部分是通过抑制肾脏和心脏的肾素表达来实现的。
2.新的维生素D衍生物 对于几种治疗SHPT的维生素D受体激动剂在发展的早期阶段,CTAP101、CTAP201、2MD、CTA018/MT2832、CTA091[48]。CTAP101是一种骨化二醇的缓释胶囊制剂,被设计来逐渐提高血清25(OH)-维生素D至生理水平,避免CYP24过度诱导,目前部分国家已允许使用治疗SHPT[49]。CTAP201的I期临床试验结果显示,它使血液透析患者PTH水平下降的作用类似度骨化醇,但具有降低血清钙和磷的能力[50]。Lunacalcipol(CT 018/mt2832)是一种新的维生素D激素类似物具有双重机制,同样其他化合物如CTA091,它是一种强效CYP24抑制剂(通过降低维生素D清除,增加活性其半衰期)。lunacalcipol不同于cta091,它也有能力激活VDR介导的基因转录,抑制PTH的合成,而且实验发现它并不影响钙和磷的水平[51]。
3.钙敏感受体调节剂 1990年识别并克隆出来钙受体,从而开始了钙受体激动剂和钙受体拮抗剂的发展。西那卡塞是第一个应用于临床的钙受体激动剂,代表了一种全新的作用机制,目前已用于治疗透析患者的SHPT。西那卡塞除了能有效的减少血清中显著增高的PTH、钙、磷、钙磷乘积,更重要的还能降低FGF23[52-54]。此外,两个重要的回顾性研究评价西那卡塞的疗效都显示,西那卡塞能延缓CVC的进展(ADVANCE)[55]和减少全因病死率、心血管事件(EVOLVE)[56]。EVOLVE研究还发现,西那卡塞可以减少非动脉粥样硬化性心血管事件的发生(包括猝死和心力衰竭的发生率),减少甲状旁腺切除术及高钙血症甚至还可以减少骨折的发生,但并不减少患者的病死率。西那卡塞对患者病死率还存在不确定性[57]。西那卡塞的出现仍为CKD-MBD的治疗开阔了新的领域,但因西那卡塞药品价格高昂,目前仍未被广泛应用。
etelcalcetide代表了一种新的、第三代静脉用、长效钙敏感受体选择性肽激动剂[58]。etelcalcetide允许在透析设置上静脉给药,这样可以提高药物监测及依从性。一项多中心、双盲、安慰剂对照研究旨在评价etelcalcetide的疗效和安全性,etelcalcetide每周3次在血液透析患者结束透析时由静脉推注以治疗患者的SHPT,观察时间为4周。研究表明,有相当比例的etelcalcetide治疗受试者PTH下降到达300 ng/ml或PTH从基线值下降30%,支持etelcalcetide持续发展,而且它较少引起高钙血症,血清磷水平也有下降趋势。etelcalcetide药物的动力学最近也被发表[59]。
4.新的口服钙敏感受体调节剂 其他两种口服的钙敏感受体调节剂在II期开发(khk-7580和asp7991)。asp7991已被证明能显著降低SHPT大鼠模型的PTH水平,可能可以比西那卡塞更少出现CYP酶介导的药物相互作用。另一种钙敏感受体调节剂化合物LEO27847,已在SHPT治疗的I期研究中被评估。
三、结论
除了生化指标和骨异常,CVC是CKD-MBD的突出特征,它直接关系到临床预后。有大量的证据说明,血清磷与CVC患者的病死率密切相关,控制高磷血症目前被认为是治疗CKD-MBD的关键之一[60-61]。新的磷结合剂不断出现让我们选择更多样化。另外,肠NA-p转运蛋白抑制剂的出现可能成为降磷治疗的一种很好替代治疗。然而,这些药物的安全性和远期效果有待观察。对于SHPT的治疗,要避免不可接受的和不必要的快速PTH抑制,根据患者对PTH反应考虑单用还是联合使用拟钙剂、活性维生素D、钙敏感受体调节剂以及它们的剂量。作为肾内科医师,不仅要考虑治疗药物的疗效,还要考虑患者的依从性、药物的毒性及药物成本。
[1] Ritter CS, Slatopolsky E. Phosphate Toxicity in CKD: the Killer among Us[J]. Clin J Am Soc Nephrol, 2016, 11(6): 1088-10100.
[2] Betriu A, Martinez-Alonso M, Arcidiacono MV, et al. Prevalence of subclinical atheromatosis and associated risk factors in chronic kidney disease: the NEFRONA study[J]. Nephrol Dial Transplant, 2014, 29(7): 1415-1422.
[3] Martin M, Valls J, Betriu A, et al. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease[J]. Sex makes a difference, 2015, 241(1): 264-270.
[4] Gracia M, Betriu, Martínez-Alonso M, et al. Predictors of subclinical atheromatosis progression over 2 years in patients with different stages of CKD[J]. Clin J Am Soc Nephrol, 2016, 11(2): 287-296.
[5] Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease[J]. J Am Soc Nephrol, 2005, 16(2): 520-528.
[6] Shinaberger CS, Greenland S, Kopple JD, et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease?[J]. Am J Clin Nutr, 2008, 88(6): 1511-1518.
[7] Fernandez-Martin JL, Martinez-Camblor P, Dionisi MP, et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study[J]. Nephrol Dial Transplant, 2015, 30(9): 1542-1551.
[8] Cannata-Andia JB, Fernandez-Martin JL, Locatelli F, et al. Use of phosphate binding agents is associated with a lower risk of mortality[J]. Kidney Int, 2013, 84(5): 998-1008.
[9] Lopes AA, Tong L, Thumma J, et al. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study(DOPPS): evaluation of possible confounding by nutritional status[J]. Am J Kidney Dis, 2012, 60(1): 90-101.
[10]Suki WN, Zabaneh R, Cangiano JL, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients: results of a randomized clinical trial[J]. J Ren Nutr, 2008, 18(1): 91-98.
[11]Zhai CJ, Yu XS, Sun QL, et al. Effect of lanthanum carbonate versus calciumbased phosphate binders in dialysis patients: a meta-analysis[J]. Clin Nephrol, 2014, 82(6): 372-378.
[12]Bover J, Urena P, Brandenburg V, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease[J]. Semin Nephrol, 2014, 34(6): 626-640.
[13]Liu L, Wang Y, Chen H, et al. The effects of non-calcium-based phosphate binders versus calcium-based phosphate binders on cardiovascular calcification and bone remodeling among dialysis patients: a meta-analysis of randomized trials[J]. Ren Fail, 2014, 36(8): 1244-1252.
[14]Wang C, Liu X, Zhou Y, et al. New conclusions regarding comparison of sevelamer and calcium-based phosphate binders in coronary-artery calcification for dialysis patients: a meta-analysis of randomized controlled trials[J]. PLoS One, 2015, 10(7): e0133938.
[15]Massy ZA, Maizel J. Pleiotropic effects of sevelamer: a model of intestinal tract chelating agent[J]. Nephrol Ther, 2014, 10(6): 441-450.
[16]Matias P, Azevedo A, Laranjinha I, et al. Lower serum magnesium is associated with cardiovascular risk factors and mortality in haemodialysis patients[J]. Blood Purif, 2014, 38(3-4): 244-252.
[17]Massy ZA, Drueke TB. Magnesium and cardiovascular complications of chronic kidney disease[J]. Nat Rev Nephrol, 2015, 11(7): 432-442.
[18]Spiegel DM, Farmer B. Long-term effects of magnesium carbonate on coronary artery calcification and bone mineral density in hemodialysis patients: a pilot study[J]. Hemodial Int, 2009, 13(4): 453-459.
[19]Tzanakis IP, Stamataki EE, Papadaki AN, et al. Magnesium retards the progress of the arterial calcifications in hemodialysis patients: a pilot study[J]. Int Urol Nephrol, 2014, 46(11): 2199-2205.
[20]Sakaguchi Y, Fujii N, Shoji T, et al. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study[J]. PLoS One, 2014, 9(12): e116273.
[21]Covic A, Passlick-Deetjen J, Kroczak M, et al. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study[J]. Nephrol Dial Transplant, 2013, 28(9): 2383-2392.
[22]Zhai CJ, Yu XS, Yang XW, et al. Effects and safety of iron-based phosphate binders in dialysis patients: a systematic review and meta-analysis[J]. Ren Fail, 2015, 37(1): 7-15.
[23]Yokoyama K, Hirakata H, Akiba T, et al. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD[J]. Clin J Am Soc Nephrol, 2014, 9(3): 543-552.
[24]Pierce D, Hossack S, Poole L, et al. The effect of sevelamer carbonate and lanthanum carbonate on the pharmacokinetics of oral calcitriol[J]. Nephrol Dial Transplant, 2011, 26(5): 1615-1621.
[25]Lewis JB, Sika M, Koury MJ, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis[J]. J Am Soc Nephrol, 2015, 26(2): 493-503.
[26]Lee CT, Wu IW, Chiang SS, et al. Effect of oral ferric citrate on serum phosphorus in hemodialysis patients: multicenter, randomized, double-blind, placebo-controlled study[J]. J Nephrol, 2015, 28(1): 105-113.
[27]Umanath K, Jalal DI, Greco BA, et al. Ferric citrate reduces intravenous iron and erythropoiesis-stimulating agent use in ESRD[J]. J Am Soc Nephrol, 2015, 26 (10): 2578-2587.
[28]Locatelli F, Spasovski G, Dimkovic N, et al. Long-term evaluation of colestilan in chronic kidney disease Stage 5 dialysis patients with hyperphosphataemia[J]. Blood Purif, 2015, 41(4): 247-253.
[29]Akizawa T, Origasa H, Kameoka C, et al. Dose-finding study of bixalomer in patients with chronic kidney disease on hemodialysis with hyperphosphatemia: a double-blind, randomized, placebo-controlled and sevelamer hydrochloride-controlled open-label, parallel group study[J]. Ther Apher Dial, 2014, 18(Suppl 2): 24-32.
[30]Berns JS. Niacin and related compounds for treating hyperphosphatemia in dialysis patients[J]. Semin Dial, 2008, 21(3): 203-205.
[31]Wu-Wong JR, Mizobuchi M. Is there a need for new phosphate binders to treat phosphate imbalance associated with chronic kidney disease?[J]. Expert Opin Investig Drugs, 2014, 23(11): 1465-1475.
[32] Isakova T, Ix JH, Sprague SM, et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD[J]. J Am Soc Nephrol, 2015, 26(10): 2328-2239.
[33]Block GA, Ix JH, Ketteler M, et al. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation[J]. Am J Kidney Dis, 2013, 62(3): 457-473.
[34]Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy[J]. J Clin Invest, 2011, 121(11): 4393-4408.
[35]Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease[J]. Nat Rev Nephrol, 2014, 10(5): 268-278.
[36]Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality[J]. J Clin Invest, 2012, 122(7): 2543-2553.
[37]KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder(CKD-MBD)[J]. Kidney Int Suppl, 2009, 113(4): S1-S130.
[38]Ketteler M, Elder GJ, Evenepoel P, et al. Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: Improving Global Outcomes controversies conference[J]. Kidney Int, 2015, 87(3): 502-528.
[39]Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism[J]. Kidney Int, 2015, 87(4): 846-856.
[40]Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patient: the DOPPS Study[J]. Clin J Am Soc Nephrol, 2015, 10(1): 98-109.
[41]Melamed ML, Michos ED, Post W. Astor B: 25-hydroxyvitamin D levels and the risk of mortality in the general population[J]. Arch Intern Med, 2008, 168(15): 1629-1637.
[42]Martinez-Castelao A, Gorriz JL, Segura-dela MJ, et al. Consensus document for the detection and management of chronic kidney disease[J]. Nefrologia, 2014, 34(2): 243-262.
[43]Torregrosa JV, Bover J, Cannata AJ, et al. Spanish society of nephrology recommendations for controlling mineral and bone disorder in chronic kidney disease patients(SEN-MBD)[J]. Nefrologia, 2011, 31(Suppl 1): 3-32.
[44]Cardús A, Panizo S, Parisi E, et al. Differential effects of vitamin D analogs on vascular calcification[J]. Bone Miner Res, 2007, 22(6): 860-866.
[45]Mittman N, Desiraju B, Meyer KB, et al. Treatment of secondary hyperparathyroidism in ESRD: a 2-year, single-center crossover study[J]. Kidney Int Suppl, 2010, 8(117): S33-S36.
[46]Lopez I, Mendoza FJ, Aguilera-Tejero E, et al. The effect of calcitriol paricalcitol, and a calcimimetic on extraosseous calcifications in uremic rats[J]. Kidney Int, 2008, 3(3): 300-307.
[47]Kong J, Kim GH, Wei M, et al. The rapeutic effects of vitamin D analogues on cardiac hypertrophy in spontaneously hypertensive rats[J]. Am J Pathol, 2010, 177(7): 622-631.
[48]Cozzolino M, Tomlinson J, Walsh L, et al. Emerging drugs for secondary hyperparathyroidism[J]. Expert Opin Emerg Drugs, 2015, 20(2): 197-208.
[49]Sprague SM, Silva AL, Al-Saghir F, et al. Modified-release calcifediol effectively controls secondary hyperparathyroidism associated with vitamin D insufficiency in chronic kidney disease[J]. Am J Nephrol, 2014, 40(6): 535-545.
[50]Cozzolino M, Tomlinson J, Walsh L, et al. Emerging drugs for secondary hyperparathyroidism[J]. Expert Opin Emerg Drugs, 2015, 20(2): 197-208.
[51]Posner GH, Helvig C, Cuerrier D, et al. Vitamin D analogues targeting CYP24 in chronic kidney disease[J]. J Steroid Biochem Mol Biol, 2010, 121(1-2): 13-19.
[52]Bover J, Urena P, Ruiz-Garcia C, et al. Clinical and practical use of calcimimetics in dialysis patients with secondary hyperparathyroidism[J]. Clin J Am Soc Nephrol, 2016, 11(1): 161-174.
[53]Wetmore JB, Gurevich K, Sprague S, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism(PARADIGM)[J]. Clin J Am Soc Nephrol, 2015, 10(6): 1031-1040.
[54]Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events(EVOLVE) trial[J]. Circulation, 2015, 132(1): 27-39.
[55]Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis[J]. Nephrol Dial Transplant, 2011, 26(4): 1327-1339.
[56]Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial[J]. J Am Soc Nephrol, 2015, 26(6): 1466-1475.
[57]Goldsmith D, Covic A, Vervloet M, et al. Should patients with CKD stage 5D and biochemical evidence of secondary hyperparathyroidism be prescribed calcimimetic therapy? An ERA-EDTA position statement[J]. Nephrol Dial Transplantation, 2015, 30(5), 698-700.
[58]Martin KJ, Bell G, Pickthorn K, et al. Velcalcetide(AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces serum parathyroid hormone and FGF23 levels in healthy male subjects[J]. Nephrol Dial Transplant, 2014, 29(2): 385-392.
[59]Chen P, Melhem M, Xiao J, et al. Population pharmacokinetics analysis of AMG416, an allosteric activator of the calcium-sensing receptor, in subjects with secondary hyperparathyroidism receiving hemodialysis[J]. J Clin Pharmacol, 2015, 55(6): 620-628.
[60]Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS)[J]. Am J Kidney Dis, 2008, 52(3): 519-530.
[61]Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes and Practice Patterns Study[J]. Kidney Int, 2005, 67(3): 1179-1187.
10.3969/j.issn.1671-2390.2017.05.012
410000 长沙,长沙市第一医院肾脏内科(王慧);中南大学湘雅二医院肾内科(彭佑铭)
彭佑铭,E-mail:870285298@qq.com
2017-02-09
2017-04-20)