APP下载

基于Optisystem的光纤通信双语课程的教学实践研究

2017-02-28卢嘉王杨刘剑飞

科技资讯 2016年26期
关键词:光纤通信实验

卢嘉+王杨+刘剑飞

摘 要:光纤通信课程是通信与光电信息类专业的重要专业课程。针对光纤通信课程中的概念抽象,实验难度大等几个主要问题,笔者利用OptiSystem软件的特点,以OptiSystem与课本相结合为主线,以知识构建和应用能力培养为重点,提出概念器件化的课程体系与先虚后实,先模拟后器件的分层次教学实验体系,并通过一个具体实例增强学生对光纤通信系统的正确认知与创新能力。

关键词:光纤通信 实验 OptiSystem

中图分类号:G642.44 文献标识码:A 文章编号:1672-3791(2016)09(b)-0006-04

光纤通信系统作为国家级电信网的骨干系统,光纤通信技术以其独特的优势成为我国发展最快的技术之一,因此“光纤通信”课程近年来一直作为我国理工科院校的重点专业课程。该课程开设的目的是使学生掌握光纤通信技术的基本原理、光纤通信系统的基本构成以及系统设计方法,了解光纤通信技术的实际应用和最新发展方向,为今后从事通信领域的工作打好必要的专业基础[1-2]。

由于课程涉及面广以及物理概念繁杂深奥,使学生理解起来非常困难。而且,由于光纤通信的设备器件都很昂贵,限制了国内大部分院校的实验仅通过简单的光纤实验箱完成,对实验过程中的每个器件的输出结果无法观察分析,导致学生对光纤传输系统并没有一个全局的认识。目前,针对“光纤通信”的教学实践中存在以下几个问题:(1)概念抽象难懂,器件构造原理复杂,不适合学生融会贯通掌握知识。(2)课堂教学模式单一,不能很好地调动学生的积极性与创造性[3]。(3)实验设备简单,实验内容涉及面窄。

目前国内研究光纤通信的主流软件包括VPI和OptiSystem。由于VPI软件昂贵,多用于科学研究,用于本科教学不现实。而OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都可使用。OptiSystem具有强大的模拟环境和真实的器件与系统的分级定义。它的性能可以通过附加的用户器件库和完整的界面进行扩展,而成为一系列广泛使用的工具。全面的图形用户界面控制光子器件设计、器件模型和演示,巨大的有源和无源器件库包括实际波长相关的参数[4]。

笔者将OptiSystem引入“光纤通信”教学中,以OptiSystem与课本相结合为主线,以知识构建和应用能力培养为重点,选择与专业核心要素有关的基础理论知识,用OptiSystem中的光器件理解抽象概念,用课本中的概念去指导实践中器件的选择。在此基础上进行光纤通信课程的实践教学体系的构建,将OptiSystem模拟仿真与实验相结合,增强学生对光纤通信系统的正确认知能力与创新能力。

1 建立基于OptiSystem的概念器件化的教学方法

突出基本理论基本分析方法和知识的应用,让学生在首次接触该课程时,从了解生动的发展历史入手,接觸到一个开阔的视野,对所有相关课程的融会贯通,以突出“光纤通信”课程的理论性和完整的系统性,而不是让其产生理论堆积的错觉。所谓“概念器件化”就是将光器件引入基本概念的讲解中,每个光器件都对应着相关参数,而这些参数对光通信系统的影响,可以通过设置OptiSystem中相关光器件参数改变系统传输,从而让学生对抽象的概念有更加形象的认识。

以光纤通信课程中光纤一章为例,此章占全课程的课时最多,重要程度可见一斑。以光纤相关概念为例,课程涉及到光纤及光波导的基础知识,光波导中模式、色散、损耗和偏振等基本概念,以及光纤的类型。这些理论是相当抽象的,传统的教学无非是将一些动画Flash与PPT相结合,观察光线在光纤中的传播路径,而对于光纤的线性与非线性效应还是不能透彻理解。而OptiSystem中光纤的种类很多,引入光纤通信中的一些难懂的概念并对其进行模拟,就能将抽象的概念形象化,有助于学生的理解。以标准光纤为例,在OptiSystem中标准光纤的参数设定参数如图1所示。

图1(a)为标准光纤的主参数设置,其中主要包括光纤的参考波长,传输长度和衰减系数等。图1(b)中为标准光纤的色散参数相关设置,主要包括群速度色散,三阶色散和色散参数等。当然关于光纤的参数还有其他选项卡可以设置,常用的有偏振模选项卡和非线性选项卡等如图1(b)所示,这里就不一一介绍了。这些参数均在“光纤通信”课程中有理论讲解,但是概念非常抽象难懂。如果在OptiSystem中对这些参数进行设置与仿真,通过改变相关参数用频谱仪观察波形变化,可以使学生对这些概念的理解更加深入。

针对课程,笔者对所有章节所需要的相关光器件进行分类,在讲授相关章节时重点进行介绍。对于第三、四章,主要介绍标准单模光纤与非线性光纤。第五章光发送机主要将LED(发光二极管)与LD(激光器)引入课程。第六章接收机主要引入PIN(光电二极管)与APD(雪崩二极管)。第七章光网络中将引入伪随机序列,信号发生器,波分复用器,光调制器,掺饵光纤放大器,光滤波器,光频谱仪,电频谱仪,误码分析仪等。这些有源与无源光器件的引入有利于后续实验的设计与验证。

2 先虚后实,先模拟后器件的分层次教学实验体系

分层次的实践教学模式,将实践教学划分为基础认知型、综合型和创新设计型3个层次。另外,由于目前 “光纤通信”课程的实验都是基础实验,由于光器件的昂贵和易损特性,因此这些基础性实验都是通过实验箱完成的。涉及的实验结果都是仅仅通过示波器观察最后的波形,结果形式单一,操作过于简单,而且几个实验的内容过于基础已经满足不了发展迅速的光通信现状,因此,采用低成本、更贴近实验的OptiSystem软件来更深入地学习“光纤通信”课程势在必行。在传统的“光纤通信”课程实验中,由于学生对器件的不了解和操作方法不当,实验箱上很多小器件的都被烧坏。如果在实验前,学生能够先使用Optisystem进行搭建与模拟仿真,就可以避免这种情况的发生。而且学生还可以通过频谱分析仪观察每个光器件的输出结果,这样有利于对结果的分析与对错误结果的调整,也有利于学生在实验箱上的正确操作和对实验结果的正确认知。此外,笔者还将在基础实验的基础上增加综合性实验和扩展性实验,以提高学生的综合分析能力和实践能力。

笔者将以一个扩展性实验实例来说明OptiSystem引入教学实验体系的重要性。该实例是复用信号的全光波长变换实验如图2。里面涉及到光纤通信的若干知识点,包括偏振复用,四波混频,光信号调制与解调等。此系统采用连续激光模块(CW laser)生成系统光载波,其中泵浦光CW1、CW2参数设置分别为:频率为193.24 THz、193.2 THz(,信号光参数设置为,频率为193.05 THz。信号光经过偏振器(Power Splitter)后成为一对正交的偏振光,调制后经偏振合束器(Polarization Combiner)合束后与两个平行的泵浦光经耦合器耦合并送入半导体光放大器(SOA)中进行全光波长变换。

调制部分用伪随机发生序列器(Pseudo Random Bit Sequence Generator)产生速率为2.5 Gbit/s的伪随机比特流,比特序列输入NRZ产生器(NRZ Pulse Generator)调制,经偏振分束器分两路驱动MZ(Mach-Zehnder Modulator)调制器,MZ调制器消光比为30 dB,偏振合束器实现两路MZ输出信号的耦合。

解调部分采用光电探测器(PD,Photo Detector PIN),PD响应度设为1 A/W,暗电流设为10 nA,在经过低通滤波器在接收端观察眼图。

图3(a)和(b)分别表示全光波长变换前后的频谱图,可以更直观的了解四波混频效应。图4(a)和(b)分别表示接收端的偏振复用信號的眼图。该实验还可以通过改变泵浦之间的间距、信号速率、泵浦与信号光之间的间距来观察实验结果,得到最优化的参数。以SOA的注入电流项为例,图5为改变SOA注入电流后,得到偏振复用信号的眼图与误码率曲线。

通过这个扩展性实验,可以利用软件仿真的方式,更加直观地掌握各个参数对光通信系统的性能影响,弥补实验设备的局限性,开阔学生的视野与知识面同时提高学生的动手能力。

3 结语

该文将OptiSystem软件引入光纤通信课堂,提出概念器件化的课程体系与先虚后实,先模拟后器件的分层次教学实验体系,并利用OptiSystem设计了光纤通信实验的一个扩展实验,可以更加直观地掌握各个参数对光通信系统的性能影响,弥补实验设备的局限性,开阔学生的视野与知识面,同时提高学生的认知能力、动手能力。通过该文提出的教学改革与实践,可以解决光纤通信课程中的概念抽象难懂、器件构造原理复杂、课堂教学模式单一、实验内容涉及面窄等问题。

参考文献

[1] 黄永清,陈雪,李蔚,等.光纤通信课程的教学改革[J].电气电子教学学报,2010(6):12-13.

[2] 黄震,毕卫红,张保军,等.光纤通信教学实践与总结[J].教学研究,2011,34(3):58-59.

[3] 徐文云.实验与仿真在光纤通信教学改革中的应用研究[J]重庆邮电大学学报:社会科学版,2007(S1):183-186.

[4] 唐志军,吴笑峰,席在芳,等.基于OptiSystem的光纤通信实验教学探索[J].西部素质教育,2015,1(12):48-49.

猜你喜欢

光纤通信实验
色彩实验
有趣的泡沫小实验
声波实验
关于植物的小实验
一种新型的模式复用器
浅析基于SDH的多业务平台(MSTP)技术及应用
基于向应用型转变的光纤通信实验教学改革研究
现代光纤通信集成电路设计分析
最酷的太空实验
让合作探究走进实验课堂