APP下载

蚂蚁群落与栖境关系研究进展及新趋势

2017-02-28陈又清

环境昆虫学报 2017年4期
关键词:群落尺度蚂蚁

陈又清

(中国林业科学研究院资源昆虫研究所,昆明 650224)

特邀稿件InvitedReview

蚂蚁群落与栖境关系研究进展及新趋势

陈又清*

(中国林业科学研究院资源昆虫研究所,昆明 650224)

生物群落与栖境的关系是生态学研究的核心之一,蚂蚁群落由于在陆地生态系统中的生物量、分布以及具备的生态功能的重要性,是研究这种关系的理想对象。在查阅大量文献的基础上,简述了蚂蚁物种多样性与栖境关系研究现状。介绍了蚂蚁功能群划分以及在不同尺度上与栖境关系的应用研究,评述了功能群应用的限制。阐明了功能特征的定义以及基于形态特征和营养级方面的蚂蚁群落功能特征与栖境的研究,并对功能特征的研究趋势进行了展望。

栖境;蚂蚁群落;物种多样性;功能群;功能特征

1 前言

生物群落与栖境的关系一直是生态学研究的核心之一(Tilman,1982;Lindenmayeretal.,2010;Jacobsen,2012;Zengetal.,2013)。栖境影响生物群落,本质上是栖境特征作为选择压力之一作用于物种的功能特征,在本土尺度上影响群落中的物种组成(Webbetal.,2010)。功能特征(functional traits)是指可以影响个体表现和适合度的任何可测定的特性(Cadotteetal.,2011),以功能特征为基础的生物群落的理论是理解群落构架原则以及预测群落对栖境响应的关键(Adleretal.,2013;Gibb and Parr,2013;Vesk,2013),也成为理解生态学群落结构以及群落解体造成的功能性效果的中心(Litchmanetal.,2010;Funk and Wolf,2016)。因此,明确本土栖境的哪些特征与物种的功能特征相关,可能为揭示变化的景观中群落结构的决定机制开拓新的视野(Ricklefs,1987;Funk and Wolf,2016)。利用植物功能特征理解植物生态学已经取得了较大的进展(Cornwelletal.,2008;Kraftetal.,2014;Kraftetal.,2015)。无脊椎动物占据陆地生态系统动物多样性中的绝大部分,在生态系统的功能中起关键作用(Losey and Vaughan,2006),是生态系统中的关键成分,但由于在物种水平的研究极少,理解物种特征与栖境如何相互作用变得困难重重。

目前全球已报道有12500种蚂蚁生活在各种栖境中,它们构成了陆地无脊椎动物生物量的主要部分(Hölldobler and Wilson,1990;Lachetal.,2010;Ward,2010)。由于在陆地生态系统中分布广、多度高和活动能力强,蚂蚁是一系列生态系统功能的关键驱动者,以及生态系统服务和气候变化的响应者,是研究栖境与群落关系的理想研究对象(Hunter,2009;Colloffetal.,2010;Del Toroetal.,2012)。

2 蚂蚁群落与栖境关系研究现状

目前蚂蚁群落与栖境的关系主要从物种多样性、功能群(functional group)、功能特征等方面进行研究,栖境指蚂蚁生存和发展的自然环境。

2.1 基于物种多样性的研究

每种蚂蚁与其生活的环境有着十分复杂的关系,因此蚂蚁群落对包括栖境丧失和不同大小的片段化两种形式的栖境变化十分敏感(Vasconcelosetal.,2006;Crist,2009)。物种丰富度(species richness)是群落物种多样性的最具代表性的表现形式,常成为学者们共同的指标用于蚂蚁群落分析,是研究蚂蚁群落与栖境关系的重要指标之一(Read and Andersen,2000;Dunnetal.,2007)。在本地尺度、局域尺度和全球尺度上,蚂蚁群落丧失初始栖境,引起物种丰富度降低,而栖境片段化导致的结果则是变动的,并不一定随着片段化程度的增加而降低(Kozon and Roussel,2013)。这两种栖境变化的模式对蚂蚁物种丰富度的影响,随着土地利用强度以及生物因子和非生物因子的变化程度的增加而增加(Crist,2009;Chenetal.,2011;Luetal.,2016)。栖境变化导致食物可获得性、可能的营巢地点以及存在互利关系或者竞争关系的物种的多度产生变化。例如,农业生产对土壤特性、树荫以及资源的可获得性造成影响,强烈影响土壤蚂蚁群落的物种丰富度等群落多样性指数,包括降低物种丰富度指数、改变群落组成和结构等(Lindenmayeretal.,2008;Crist,2009);砍伐和火烧减少植被的盖度,增加阳光照射,有利于优势物种的物种丰富度,而机会主义者和广布种则消失(Andersen and Majer,2004);排斥性竞争降低物种丰富度(Andersen,1997;Hoffmann and Andersen,2003)。另外,学者们对栖境复杂性(多指栖境不规则程度)与蚂蚁群落物种丰富度之间关系的认识存在分歧,有研究显示栖境复杂性降低导致蚂蚁物种丰富度减低(Lassau and Hochuli,2004;Sartyetal.,2006),然而Bihn等(2010)的结论则相反,可能与群落演替有关。

由于物种丰富度对于群落内的基本过程提供的信息十分有限(Nakamuraetal.,2007),该指标的有效性经常处于争论的焦点。

2.2 基于功能群的研究

功能群研究是蚂蚁群落研究中十分活跃的部分,在不同尺度上均有应用。全球尺度划分的蚂蚁功能群包括数量丰富、活动能力及侵略性较强的优势臭蚁亚科(Dominant Dolichoderinae,DD),体型较大、通常与DD一起出现且种群受其制约的从属弓背蚁族(Subordinate Camponotini,SC),适应气候的特化的气候专家,分为热气候专家(Hot Climate Specialists,HCS)、冷气候专家(Cold Climate Specialists,CCS)和热带气候专家(Tropic Climate Specialists,TCS),在土壤和枯落物层觅食的隐蔽物种(Cryptic Species),在世界上分布较广泛的种类广义切叶蚁亚科(Generalized Myrmicinae,GM),竞争能力较弱类群、明显受其它蚂蚁类群影响的机会主义者(Opportunists),由捕食性蚂蚁构成的专业捕食者(Specialist Predators,SP)等7个功能群(Andersen,1990,1997)。在大尺度上,根据蚂蚁对栖境压力及干扰的响应,在属级和物种组合水平上划分的功能群能够很好地解释蚂蚁群落动态,因为不同的功能群的物种数量、多度或物种组成对栖境变化产生不同的响应(Kingetal.,1998;Bisevac and Majer,1999)。在区域尺度上,Delabie等人(2000)基于巴西大西洋雨林枯落物层蚂蚁建立区域尺度功能群,评价了该地区地表层和枯落物层蚂蚁群落响应栖境和生态系统功能变化,以及评价栖境变化如森林片段化对蚂蚁群落的影响,结果发现隐蔽物种、专业捕食者、气候专家三个功能群能指示森林片段化,片段化的面积和树木的密度影响的物种丰富度(Leal,2012)。在本地尺度上,将全球尺度上划分的功能群进行适当的调整,能够反映出土地利用变化导致的栖境变化,广义切叶蚁亚科、从属弓背蚁族和机会主义者的指示效果较好,实质上是不同功能群中不同物种的多度及功能群内的群落组成变化对生境变化导致的干扰及资源可利用程度的响应有差异(卢志兴和陈又清,2016;卢志兴等,2016)。

目前,全球尺度蚂蚁功能群系统已被用于澳大利亚地区以及北美和欧洲地区(Andersen,1995;Hoffmann and Andersen,2003),由于该系统是在研究澳大利亚北部干热区域蚂蚁的基础上建立起来,其在其他非干热或森林条件较好区域的适用性仍然存在争议。而区域尺度及本地尺度的运用则更少。

2.3 基于功能特征的研究

功能特征最早用于植物生态学研究,指通过影响物种生长、繁殖和存活等个体表现,间接影响其适合度的形态的、生理的和物候的特征(Violleetal.,2007)。随着功能特征研究的拓展,它还包括物理的如捕食者的牙齿形态学特性、行为的如夜间或者白天觅食习性、时间上的如幼期时间长度等等(Cadotteetal.,2011)。包括形态特征在内的功能特征则能提供测定蚂蚁群落结构和组成的有效方法(Yates and Andrew,2011),因为这些量化的指标是漫长的进化时间尺度上形成的,能指示其在栖境内生态位的竞争性。常见的蚂蚁功能特征包括韦伯长(Weber’s length)、头宽(head width)、眼位(eye position)、眼宽(eye width)、上颚长和宽(mandible length and width)、腿节长(femur length)、被毛(pilosity)、营养级(trophic position)等等(Gibb and Parr,2010;Yates and Andrew,2011;Gibbetal.,2015)。其中韦伯长描述身体大小,反映蚂蚁在变化的栖境中对猎物尺寸的选择及觅食的微环境的选择;头宽反映利用栖境的复杂性;复眼位置表现生活栖境的复杂程度和捕食性行为;眼睛宽度反映搜寻食物行为和活动时间;上颚长和宽反映捕食性行为;腿节长反映生活栖境复杂程度和捕食性行为;被毛反映失水耐受性或对信号的感受能力;营养级反映了蚂蚁在栖境中的食性及资源利用状况,通常用氮值来表示(Gibb and Parr,2010;Yates and Andrew,2011;Gibbetal.,2015;武子文等,2015)。

2.3.1基于形态学的功能特征

在复杂程度(多指栖境不规则程度)不同的栖境中,蚂蚁的形态特征存在差异。蚂蚁的腿节长随着栖境复杂程度提高而降低(Gibb and Parr,2010;Wiescheretal.,2012);较大个体的蚂蚁在简单栖境中占优(Retanaetal.,2015)。身体大或身体指数大的种类在开阔栖境中数量多(Gibb and Parr,2010;Arnanetal.,2013;Retanaetal.,2015),例如,较宽头部的种类在较少灌木覆盖和朽木较多的栖境中常见,如举腹蚁属Crematogaster和铺道蚁属Tetramorium等。复眼靠背而不是两侧的蚂蚁喜在开阔栖境中,可能与在开阔栖境中视线好相关(Gibb and Parr,2013),能较好躲避空中捕食者。多毛的蚂蚁种类在裸地中盛行,可能与抗脱水有关(Wittlingeretal.,2007)。多刺蚂蚁与高的冠幅覆盖(低裸露地)相关,可能与被捕食风险有关(Gibbetal.,2015)。韦伯长与栖境复杂性相关(Gibbetal.,2015;Retanaetal.,2015),其运行机制可能是阻止个体大的物种移动,允许个体小的物种茁壮成长(With,1994)。

栖境复杂性影响群落中物种的身体大小,源于该指标是决定蚂蚁在不同复杂程度栖境中觅食成功的关键(Retanaetal.,2015)。身体-谷物假说(size-grain hypothesis)认为:长腿蚂蚁的收获会随着身体大小的降低而降低,因为在有缝隙的栖境中,这会成为障碍(Kaspari and Weiser,1999)。当物种体型较小时,简单栖境妨碍觅食成功性(Gibbetal.,2015);当物种个体较大时,复杂栖境通过阻碍其运动,减弱觅食成功性,这样具有相对较短腿节长的较小个体的物种能接近食物资源(Retanaetal.,2015)。基于形态学的功能特征研究揭示,蚂蚁群落结构可能随着栖境的复杂程度而改变,这种变化可能由物种替换引起,也可能由栖境中的生物的和非生物特征作为过滤器选择本土栖境的物种引起(Gibb and Parr,2010;Gibbetal.,2015)。虽然本地物种应对栖境复杂程度变化已有一些研究,但利用蚂蚁功能特征探讨物种应对栖境变化的一般规律还未尝试。

2.3.2基于营养级的功能特征

当生物群落中有明显的植食者和捕食者群组时,营养级结构十分清楚并相对不可变(MacFadyenetal.,2009);但是营养级的混乱普遍存在,杂食性的类群可能卷入复杂的相互作用中,既包括种间的竞争,又包括族群内的捕食(Hunter,2009)。

蚂蚁在营养级中占据较为广的谱,从与蜘蛛相似的高度捕食性的种类,到利用更多植物源材料食谱的植食性的物种(Davidsonetal.,2003)。蚂蚁的营养级功能特征受到栖境内食物资源的强烈影响,如富含蜜露资源或花外蜜的栖境将吸引过分依赖这些资源的蚂蚁物种(Blüthgenetal.,2004;卢志兴等,2016),可能导致这些物种氮值低(Davidsonetal.,2003),又如捕食植食性昆虫的蚂蚁相对于捕食非植食性昆虫的蚂蚁具有较低的氮值(Gibb and Cunningham,2011)。目前在属级水平上对蚂蚁营养级的报导十分有限,能够明确的植食性蚂蚁包括弓背蚁属Camponotus、虹臭蚁属Iridomyrmex、小家蚁属Monomorium以及多刺蚁属Polyrhachis部分种类;而捕食性的蚂蚁除了猛蚁外,依赖产蜜昆虫的织叶蚁Oecophylla及蚁属Formica的种类偶尔也能超过预期呈现较高的捕食性(Gibb and Cunningham,2011)。

相对于形态学方面的功能特征研究,栖境与蚂蚁营养级功能特征关系的研究十分稀少。而基于营养级的功能特征反映蚂蚁物种在食物链及食物网中的位置,以及群落内物种间竞争关系,与栖境的关系十分密切,今后应该加强这方面的研究。

3 结语

在已有的蚂蚁群落与栖境关系研究中,物种丰富度常常作为共同的指标用于蚂蚁群落分析,但该指标对于群落内受栖境影响变化的基本过程提供的信息十分有限。为了简化评价蚂蚁群落,基于它们的竞争性相互作用、对压力和干扰的响应,以及对栖境的要求等方面,功能群体系被提出,这种属级层面的群落指标相对于物种丰富度,能为不同的生态系统提供更加明确的信息。不足之处是功能群更大程度上只能定义为相互作用中的行为特征,而且这种特征不一定稳定,可能随时改变。而功能特征则能提供测定蚂蚁群落结构和组成的有效方法,因为这些量化的指标是漫长的进化时间尺度上形成的,能指示其在栖境内生态位的竞争性。栖境影响生物群落,本质上是栖境特征作为选择压力之一作用于物种的功能特征,在本土尺度上影响群落中的物种组成。因次,相比基于物种(包括功能群)的途径,特征具备潜力较好地预测种类繁多的各种动物对栖境变化的响应。

栖境结构的变化是全球变化的重要组成部分(Tilman,2001),全球范围内的栖境变化,正导致全球范围内的生物多样性快速丢失(Newboldetal.,2015)。对于种类繁多的类群,比如节肢动物,要在200万到1000万的物种中找出对栖境变化做出响应的物种,本世纪内无法完成(Hamiltonetal.,2010)。然而,蚂蚁的形态学特征与其功能之间所具有的高度相关性,为我们理解物种如何响应全球范围内的栖境变化提供了可能(Gibb and Parr,2013)。统计技术的发展也为研究该类群物种特征如何与栖境相关提供了新的希望(Brownetal.,2014)。

在全球变化的背景下,系统研究栖境特征与物种的功能特征的关系十分必要。蚂蚁在变化后的栖境中如何生存或占优势?哪些特征以及特征组合影响物种间的相互作用?这些特征如何影响物种间的相互作用并有助于适应新的栖境?物种内的功能特征变异与物种适应变动与栖境的关系如何?物种功能特征如何应用于预测栖境内群落的组成和多样性,进而影响生态系统的弹性和修复?这些问题都是今后研究的新方向。

References)

Adler PB, Fajardo A, Kleinhesselink AR,etal. Trait-based tests of coexistence mechanisms [J].EcologyLetters, 2013, 16 (10): 1294-1306.

Andersen AN. The use of ant communities to evaluate change in Australian terrestrial ecosystems:A review and a recipe [J].ProceedingsoftheEcologicalSocietyofAustralia, 1990, 16: 347-357.

Andersen AN. A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance [J].JournalofBiogeography, 1995, 22 (1): 15-29.

Andersen AN. Functional groups and patterns of organization in North American ant communities:A comparison with Australia [J].JournalofBiogeography, 1997, 24 (4): 433-460.

Andersen AN, Majer JD. Ants show the way down under: Invertebrates as bioindicators in land management [J].FrontiersinEcologyandtheEnvironment, 2004, 2 (6): 291-298.

Arnan X, Cerda X, Rodrigo A,etal. Response of ant functional composition to fire [J].Ecography, 2013, 36 (11): 1182-1192.

Bihn JH, Gebauer G, Brandl R. Loss of functional diversity of ant assemblages in secondary tropical forests [J].Ecology, 2010, 91 (3): 782-792.

Bisevac L, Majer JD. Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia [J].RestorationEcology, 1999, 7 (2): 117-126.

Blüthgen N, Stork NE, Fiedler K,etal. Bottom-up control and co-occurrence in complex communities: Honeydew and nectar determine a rainforest ant mosaic [J].Oikos, 2004, 106 (2): 344-358.

Brown AM, Warton DI, Andrew NR,etal. The fourth-corner solution-using predictive models to understand how species traits interact with the environment [J].MethodsinEcology&Evolution, 2014, 5 (4): 344-352.

Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: Functional diversity and the maintenance of ecological processes and services [J].JournalofAppliedEcology, 2011, 48 (5): 1079-1087.

Chen YQ, Li Q, Chen YL,etal. Ant diversity and bio-indicators in land management of lac insect agroecosystem in Southwestern China [J].Biodiversity&Conservation, 2011, 20 (13): 3017-3038.

Colloff MJ, Pullen KR, Cunningham SA. Restoration of an ecosystem function to revegetation communities: the role of invertebrate macropores in enhancing soil water infiltration [J].RestorationEcology, 2010, 18 (s1): 65-72.

Cornwell WK, Cornelissen JHC, Amatangelo K,etal. Plant traits are the predominant control on litter decomposition rates within biomes worldwide [J].EcologyLetters, 2008, 11 (10): 1065-1071.

Crist TO. Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes:A review [J].MyrmecologicalNews, 2009, 12 (3): 3-13.

Davidson DW, Cook SC, Snelling RR,etal. Explaining the abundance of ants in lowland tropical rainforest canopies [J].Science, 2003, 300 (5621): 969-972.

Del Toro I, Ribbons RR, Pelini SL. The little things that run the world revisited:A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae) [J].MyrmecologicalNews, 2012, 17 (4): 133-146.

Delabie JHC, Agosti D, Nascimento IC. Litter ant communities of the Brazilian Atlantic rain forest region. Sampling Ground-dwelling Ants:Case studies from the world’s rain forests[C]. Curtin University of Technology School of Environmental Biology Bulletin, 2000.

Dunn RR, Sanders NJ, Fitzpatrick MC,etal. Global ant (Hymenoptera: Formicidae) biodiversity and biogeography-a new database and its possibilities [J].MyrmecologicalNews, 2007, 10: 77-83.

Funk JL, Wolf AA. Testing the trait-based community framework: Do functional traits predict competitive outcomes? [J].Ecology, 2016, 97 (9): 2206-2211.

Gibb H, Cunningham SA. Habitat contrasts reveal a shift in the trophic position of ant assemblages [J].JournalofAnimalEcology, 2011, 80 (1): 119-127.

Gibb H, Parr CL. How does habitat complexity affect ant foraging success? A test using functional measures on three continents [J].Oecologia, 2010, 164 (4): 1061-1073.

Gibb H, Parr CL. Does structural complexity determine the morphology of assemblages? An experimental test on three continents [J].PLoSONE, 2013, 8 (5): e64005.

Gibb H, Stoklosa J, Warton DI,etal. Does morphology predict trophic position and habitat use of ant species and assemblages [J].Oecologia, 2015, 177 (2): 519-531.

Hamilton AJ, Basset Y, Benke KK,etal. Quantifying uncertainty in estimation of tropical arthropod species richness [J].AmericanNaturalist, 2010, 176 (1): 90-95.

Hoffman BD, Andersen AN. Responses of ants to disturbance in Australia, with particular reference to functional groups [J].AustralEcology, 2003, 28 (4): 444-464.

Hoffmann BD. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory [J].AustralEcology, 2003, 28 (2): 182-195.

Hölldobler B, Wilson EO. The Ants [M]. Cambridge: Belknap Press, 1990.

Hunter MD. Trophic promiscuity, intraguild predation and the problem of omnivores [J].AgriculturalandForestEntomology, 2009, 11 (2): 125-131.

Jacobsen R. Endangered and threatened wildlife and plants; revised critical habitat for the northern spotted [J].FederalRegister, 2012.

Kaspari M, Weiser MD. The size-grain hypothesis and interspecific scaling in ants [J].FunctionalEcology, 1999, 13 (4): 530-538.

King JR, Andersen AN, Cutter AD. Ants as bioindicators of habitat disturbance:Validation of the functional group model for Australia's humid tropics [J].Biodiversity&Conservation, 1998, 7 (12): 1627-1638.

Kozon I, Roussel J. Impact of habitat shift driven by humans on ants biodiversity and foraging strategies [DB/OL]. http://www.ecofog.gf/IMG/pdf/roussel-kozon-m2eft.pdf. 2017-05-17.

Kraft NJ, Crutsinger GM, Forrestel EJ,etal. Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants [J].Oikos, 2014, 123 (11): 1391-1399.

Kraft NJB, Adler PB, Godoy O,etal. Community assembly, coexistence, and the environmental filtering metaphor [J].FunctionalEcology, 2015, 29 (5): 592-599.

Lassau SA, Hochuli DF. Effects of habitat complexity on ant assemblages [J].Ecography, 2004, 27 (2): 157-164.

Lach L, Parr C, Abbott K. Ant Ecology [M]. Oxford: Oxford University Press, 2009.

Leal IR, Filgueiras BKC, Gomes JP,etal. Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest [J].BiodiversityandConservation, 2012, 21 (7): 1687-1701.

Lindenmayer DB, Crane MJ, Montague-Drake R,etal. What makes an effective restoration planting for woodland birds [J].BiologicalConservation, 2010, 143 (2): 289-301.

Lindenmayer DB, Fischer J, Felton A,etal. Novel ecosystems resulting from landscape transformation create dilemmas for modern conservation practice [J].ConservationLetters, 2008, 1 (3): 129-135.

Litchman E, de Tezanos Pinto P, Klausmeier CA,etal. Linking traits to species diversity and community structure in phytoplankton [J].Hydrobiologia, 2010, 653 (1): 15-28.

Losey JE, VaughanM. The economic value of ecological services provided by insects [J].BioScience, 2006, 56 (4): 311-323.

Lu ZX, Hoffmann BD, Chen YQ. Can reforested and plantation habitats effectively conserve SW China’s ant biodiversity? [J].BiodiversityandConservation, 2016, 25 (4): 753-770.

Lu ZX, Chen YQ. Effects of habitat on ant functional groups:A case study of Lüchun County, Yunnan Province, China [J].ChineseJournalofEco-Agriculture, 2016, 24 (6): 801-810. [卢志兴, 陈又清. 不同生境对蚂蚁功能群的影响——以云南省绿春县为例[J]. 中国生态农业学报, 2016, 24 (6): 801-810]

Lu ZX, Li KL, Zhang NN,etal. Effects of lac-corn agroforest ecosystem on ground-dwelling ant diversity and functional groups [J].ChineseJournalofEco-Agriculture, 2016, 24 (1): 81-89. [卢志兴, 李可力, 张念念,等. 紫胶玉米混农林模式对地表蚂蚁多样性及功能群的影响[J]. 中国生态农业学报, 2016, 24 (1): 81-89]

Macfadyen S, Gibson R, Polaszek A,etal. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? [J].EcologyLetters, 2009, 12 (3): 229-238.

Nakamura A, Catterall CP, House APN,etal. The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use [J].JournalofInsectConservation, 2007, 11 (2): 177-186.

Newbold T, Hudson LN, Hill SL,etal. Global effects of land use on local terrestrial biodiversity [J].Nature, 2015, 520 (7545): 45-50.

Read JL, Andersen AN. The value of ants as early warning bioindicators:Responses to pulsed cattle grazing at an Australian arid zone locality [J].JournalofAridEnvironments, 2000, 45 (3): 231-251.

Retana J, Arnan X, Cerdá X. A multidimensional functional trait analysis of resource exploitation in European ants [J].Ecology, 2015, 96 (10): 2781-2793.

Ricklefs RE. Community diversity:Relative roles of local and regional processes [J].Science, 1987, 235 (4785): 167-171.

Sarty M, Abbott KL, Lester PJ. Habitat complexity facilitates coexistence in a tropical ant community [J].Oecologia, 2006, 149 (3): 465-473.

Tilman D. Resource competition and community structure [J].TheQuarterlyReviewofBiology, 1984, 17(59(2)): 1.

Tilman D, Fargione J, Wolff B,etal. Forecasting agriculturally driven global environmental change [J].Science, 2001, 292 (5515): 281-284.

Vasconcelos HL, Vilhena J, Magnusson WE,etal. Long-term effects of forest fragmentation on Amazonian ant communities [J].JournalofBiogeography, 2006, 33 (8): 1348-1356.

Vesk PA. How traits determine species responses to environmental gradients [J].JournalofVegetationScience, 2013, 24 (6): 977-978.

Violle C, Navas ML, Vile D,etal. Let the concept of trait be functional [J].Oikos, 2007, 116 (5): 882-892.

Ward PS. Taxonomy, phylogenetics, and evolution. Ant ecology (Lach L, Parr C, and Abbot KL,ed.), Oxford University Press, Oxford,2010:402.

Webb CT, Hoeting JA, Ames GM,etal. A structured and dynamic framework to advance traits-based theory and prediction in ecology [J].EcologyLetters, 2010, 13 (3): 267-283.

Wiescher PT, Pearce-Duvet JMC, Feener DH. Assembling an ant community: Species functional traits reflect environmental filtering [J].Oecologia, 2012, 169 (4): 1063-1074.

With KA. Using fractal analysis to assess how species perceive landscape structure [J].LandscapeEcology, 1994, 9 (1): 25-36.

Wittlinger M, Wolf H, Wehner R. Hair plate mechanoreceptors associated with body segments are not necessary for three-dimensional path integration in desert ants,Cataglyphisfortis[J].JournalofExperimentalBiology, 2007, 210 (3): 375-382.

Wu ZW, Lu ZX, Chen YQ. Comparison of ant’s functional traits in resource utilization [J].ForestResearch, 2015, 28 (5): 744-748. [武子文, 卢志兴, 陈又清. 蚂蚁利用资源的功能特征比较[J]. 林业科学研究, 2015, 28 (5): 744-748]

Yates M, Andrew NR. Comparison of ant community composition across different land-use types: Assessing morphological traits with more common methods [J].AustralianJournalofEntomology, 2011, 50 (2): 118-124.

Zeng Y, Xu J, Wang Y,etal. Habitat association and conservation implications of endangered Francois’ langur (Trachypithecusfrancoisi) [J].PLoSONE, 2013, 8 (10): e75661.

Theprogressofstudyontherelationshipbetweenantcommunityandhabitatandanewtrend

CHEN You-Qing*

(Research Institute of Resources Insects, Chinese Academy of Forestry, Kunming 650224, China)

s: The relationship between the biocenosis and habitat is one of the foci of ecological research. Ant community is the ideal object for this study because of its importance in the terrestrial ecosystem in terms of biomass, distribution and ecological functioning. In this article, based on the review of the great deal of scientific literatures, the research progress of relationship between ant community species diversity and habitat was elaborated. The classification of ant functional group scheme and the applications for relationship between ant community and habitat on different spatial scale were introduced. But this scheme had some limit in practice in some area. The definition of functional traits was introduced and some studies on the relationship between ant community and habitat were elaborated based on morphological traits and trophic position trait. And the research trend of functional traits was discussed.

Habitat; ant community; species diversity; functional group; functional traits

国家自然科学基金项目(31470493,31270561)

陈又清,男,1969年生,湖北浠水人,博士,研究员,研究方向为昆虫生态学,E-mail:cyqcaf@126.com

*通讯作者Author for correspondence, E-mail: cyqcaf@126.com

Received: 2017-05-24; 接受日期Accepted: 2017-07-30

Q968;S476

:A

1674-0858(2017)04-0735-06

陈又清.蚂蚁群落与栖境关系研究进展及新趋势[J].环境昆虫学报,2017,39(4):735-740.

猜你喜欢

群落尺度蚂蚁
大学生牙龈炎龈上菌斑的微生物群落
合成微生物群落在发酵食品中的应用研究
财产的五大尺度和五重应对
我国西北某陆地油田采出水微生物群落结构
我们会“隐身”让蚂蚁来保护自己
蚂蚁
宇宙的尺度
锡林郭勒草原主要植被群落变化
9
蚂蚁找吃的等