APP下载

肯尼亚水稻土和甘蔗地土壤中14C-六氯苯和14C-滴滴涕的自然消解*

2017-02-23鑫FredrickOroriKengara王芳谷成刚杨兴伦UlrikerflerReinerSchrollJeanCharlesMunch蒋

土壤学报 2017年1期
关键词:氯苯矿化甘蔗

金 鑫Fredrick Orori Kengara王 芳谷成刚杨兴伦Ulrike DörflerReiner SchrollJean Charles Munch蒋 新,4†

(1 中国科学院土壤环境与污染修复重点实验室(中国科学院南京土壤研究所),南京 210008)

(2 马赛诺大学化学系,马赛诺 40105,肯尼亚)

(3 亥姆霍兹慕尼黑研究中心微生物—植物交互作用研究组,慕尼黑 85764,德国)

(4 中国科学院大学,北京 100049)

肯尼亚水稻土和甘蔗地土壤中14C-六氯苯和
14C-滴滴涕的自然消解*

金 鑫1,3,4Fredrick Orori Kengara2,3王 芳1谷成刚1杨兴伦1Ulrike Dörfler3Reiner Schroll3Jean Charles Munch3蒋 新1,4†

(1 中国科学院土壤环境与污染修复重点实验室(中国科学院南京土壤研究所),南京 210008)

(2 马赛诺大学化学系,马赛诺 40105,肯尼亚)

(3 亥姆霍兹慕尼黑研究中心微生物—植物交互作用研究组,慕尼黑 85764,德国)

(4 中国科学院大学,北京 100049)

氯代持久性有机污染物的农田土壤污染呈现污染浓度低、面积大、新源污染不断输入的特点。农田土壤本身微生物种类丰富,对氯代有机污染物具有较大的降解潜力和未知性。本试验以典型高氯代和低氯代持久性有机污染物——六氯苯(HCB)和滴滴涕(DDT)为研究对象,结合14C同位素示踪技术,研究HCB和DDT在热带水稻土和甘蔗地土壤的矿化现象,同时监测HCB和DDT在两种土壤中的挥发、降解产物以及结合残留。结果表明,经84 d好氧培养,HCB和DDT在两种土壤中的矿化量分别仅为0.14%和3%,低氯代有机污染物DDT的矿化速率显著高于高氯代有机污染物HCB。然而,两种土壤对HCB或DDT的矿化没有显著性差异。HCB或DDT在水稻土中的挥发量略微高于甘蔗地土壤,两种土壤中HCB和DDT的挥发量在0.1%~0.6%之间,表明挥发不是其主要的环境过程。在DDT污染水稻土和甘蔗地土壤中添加1.25%的堆肥增加了DDT在土壤中的矿化与结合残留,减少了DDT的挥发。本研究结果表明土壤在好氧条件下对氯代持久性有机污染物的自然消解能力非常弱,而有机肥的使用有助于土壤中持久性氯代有机污染物的矿化消除。

持久性有机污染物;堆肥;矿化;挥发;结合残留

土壤中持久性有机污染物(POPs)的环境归趋一直备受关注。尽管斯德哥尔摩公约已经禁止(或限制)生产和使用包括六氯苯(HCB)和滴滴涕(DDT)在内的大部分POPs[1],但该类物质仍能通过农药化学品的使用、工业生产和废弃物燃烧等过程进入环境[2-3]。DDT具有廉价高效的抗虐疾特性,因此在热带地区的发展中国家仍被世界卫生组织推荐使用[4]。由于POPs的难降解特性,其在土壤中残留依然十分严重。珠江三角洲、太湖区域、陕西杨林等地农田土壤HCB污染调查显示,农田HCB污染水平为0~6.2 ngg-1[5-7]。DDT的农田土壤污染水平较HCB高出1~2个数量级[5,8-9]。环境残留的POPs会经土壤植物系统进入食物链,对人体健康造成潜在危害[10]。

DDT和HCB在农田土壤中的残留呈现污染面积大、浓度低、新源污染不断输入的特点,微生物降解较化学手段更适用于农田土壤污染修复[11-14]。土壤微生物对POPs降解有极大潜力,然而,目前以HCB和DDT作为单一碳源生长的专一降解微生物仍鲜见报道。因此,有必要研究不同土壤类型对HCB和DDT自然消解潜力及特性。自然消解是自然条件下污染物的生物降解、扩散、稀释、吸附、挥发和生物/化学固定等过程,使污染物的毒性、迁移性及浓度降低至对人类健康和生态系统不构成危害的水平[15]。氯代有机污染物在稻田土壤和旱地土壤中的降解行为或许有所不同,已有污染调查表明DDT(包括DDD和DDE)在菜地和果园中的残留浓度高于其在水稻土中的残留浓度[5,16]。因此,有必要比较微生物作用下不同耕作类型土壤对HCB 和DDT的矿化消除能力。

生物刺激(bio-stimulation)是微生物修复技术中的常用手段:即通过添加外源物质,如外加养分、电子受体或小分子苯系物,来诱导并激发土著微生物的降解能力[17]。共代谢土壤微生物可协同降解HCB和DDT,由此推测添加外源养分可促进共代谢微生物活性,从而强化此类污染物的降解甚至矿化。然而,Wang等[8]研究不同施肥类型对DDT类物质农田残留的影响得出,施用秸秆和养殖粪肥会阻碍有机氯农药在土壤中的降解。Liu等[18]报道了有机肥的施用减缓了HCB的脱氯降解,而施用尿素却起到了促进脱氯降解的作用。因此,外加碳源对HCB和DDT矿化消除的影响仍有待研究。

已有关于土壤中HCB和DDT降解的报道,往往只局限于测定母体化合物的消除速率或者代谢产物的生成速率[18-19]。但是,母体化合物的上游代谢转化过程并不代表污染物的彻底消除。而且,土壤基体对污染物的吸附固定也可能导致高估污染物的降解[20]。因此,本研究利用14C同位素示踪技术来研究污染物的挥发、降解与矿化(生成CO2)以及结合残留的形成,从而全面准确评估土壤对污染物的降解能力。

1 材料与方法

1.1 试剂与供试土壤

14C标记的六氯苯(14C-HCB,纯度>98%,放射性比活度5.0 mCimmol-1)和14C标记的p,p’-滴滴涕(14C-p,p’-DDT,纯度>98%,放射性比活度12.8mCimmol-1)来自International Isotopes公司(慕尼黑,德国),苯环上全部C原子均被标记。液体闪烁液Ultima Gold XR,Ultima Flo AF 和Permafluor E来自Perkin Elmer公司(罗德高,德国)。CO2吸收液Carbosorb E 来自Packard公司(德莱艾希,德国)。非放射标记的标准品:六氯苯,五氯苯,一氯苯,二、三、四氯苯的同分异构体,p,p’-DDT,p,p’-DDD,p,p’-DDE,p,p’-DDMU和p,p’-DDM均购自Dr.EhrenstorferLaboratories公司(奥古斯堡,德国)。

试验选择两种不同利用类型的土壤,分别为长期经历厌氧-好氧循环的水稻土和长期旱作条件下的甘蔗地土壤,目的在于研究氯代有机污染物在典型利用方式土壤中的矿化效率。供试水稻土采自肯尼亚玛维尔(Mwea)灌溉区域(37°22′00″E,00°42′00″N)水稻田,该地区自1956年开始种植水稻,土壤系统名称为水耕人为土。供试甘蔗地土壤采自肯尼亚维多利亚流域(Lake Victoria Catchment)尼安多(Nyando)地区的甘蔗地(35°07′57.51″E,00°05′04.77″S),土壤系统分类名称为干润变性土。该水稻土和甘蔗地土壤经风干研磨过2mm筛,在室温下储存。试验中使用的堆肥肥料来自花园垃圾,从德国弗莱星附近的一个堆肥场获得。该堆肥过2mm筛后储存于4℃的冷库,储存过程中堆肥肥料含水量为33%。供试土壤及堆肥肥料的物理化学性质见表1。

1.2 土壤培养试验

在20℃条件下,将供试水稻土和甘蔗地土壤以40%的最优含水量(-15 KPa负压下土壤含水量)平衡两周以复苏土壤微生物。称取45g (干重)土壤于250mL的玻璃瓶中。将14C-HCB和非放射性标记的HCB溶解于环己烷溶液中,得到浓度为10μgμL-1的储备液。用汉密尔顿注射器取150μL该储备液逐滴加入5g烘干(105℃,24 h)土壤中。待环己烷挥发后,轻轻地搅拌均匀,并转移至上述250 mL玻璃瓶中,慢慢搅拌使污染物在土壤中均匀分布。土壤中HCB的最终添加浓度为30 μg g-1,总放射性含量为25.13 kBq。14C-DDT的接种处理与14C-HCB的接种过程相同,最终土壤中DDT浓度为30 μg g-1,总放射性含量为33.95 kBq。接种过14C-HCB和14C-DDT的土壤,压实至容重为1.3 g cm-3,加水调节土壤含水量,关闭瓶口,在30℃避光条件下培养84d。水稻土培养组含水量调节至63%,甘蔗地土壤含水量调节至35%,均为-15kPa负压下土壤水分平衡态。在该含水量条件下土壤有机污染物的矿化降解效率最高[21]。每种土壤对每个污染物设置4个平行处理。

表1 供试土壤和堆肥肥料的基本理化性质Table 1 Physical-chemical properties of the soils and compost tested

1.3 堆肥对老化DDT矿化影响试验

由于HCB的矿化率非常低,所以HCB的好氧培养试验在第84d停止。对于DDT,在实验第84d,将DDT降解的水稻土和甘蔗地土壤各平行样按25 g等分成两份,一份作为对照,另外一份加入1.25%的堆肥。在相同土壤含水量条件下将土壤混合均匀后压实至1.3 g cm-3,在30℃下继续培养试验。

1.414CO2和挥发性物质的采集和分析

试验1.2和1.3节中土壤培养的玻璃瓶通过一个密闭的样品采集系统(图1)每周通气2次,每次通气一小时以采集产生的14CO2和14C-挥发性物质。该样品采集系统的第一个蛇形管中含有10mL二乙二醇单甲醚(Ethylenemonomethylether,EMME)用于捕获14C-挥发性有机物。第二个和第三个蛇形管中分别添加10mLNaOH(0.1 mol L-1),用于捕获14C-CO2。通气结束后,10 mL EMME吸收液加入10 mLUltimaGlod液闪液,经液体闪烁计数器(Tri-Carb 1900 TR,Canberra-Packard GmbH,德国)

图1 通气及样品采集系统Fig. 1 Sketch of the aerating and sampling system

测定挥发性有机物放射性含量。取2 mLNaOH吸收液加入3 mLUltima Flo液闪液,经该液体闪烁计数器测定14CO2的放射性含量。

1.5 土壤样品分析

试验结束后,进一步分析土壤中HCB和DDT的降解产物和结合残留。称取20g(干重)土壤混合2g 硅藻土(Sigma-Aldrich,德国),搅拌均匀后加入到加速溶剂提取柱中,用正己烷和丙酮3∶1混合溶剂作为提取液在加速溶剂提取仪(ASE)200(Dionex,德国)上提取[22]。ASE提取程序为:100℃,100bar压力,1min预热,5min静态提取,60%体积冲刷,100s吹扫,2次循环。每个样品提取两次,第二次提取的量小于第一次提取量的5%。取1 mL ASE提取溶液混合4mLUltima Gold液闪液测定其放射性含量。ASE提取溶液过30g无水硫酸钠以去除其中水分,再经旋转蒸发仪(Butch,瑞士)浓缩至约5mL,然后过6mL弗洛里硅土SPE柱(安捷伦,美国)去除杂质[23],用50 mL正己烷/二氯甲烷(9∶1,v/v)淋洗[14],再浓缩至10 mL,从而得到纯化的HCB和DDT及其代谢产物,气相色谱待测。

经A S E提取后的土壤用研钵磨粉,称取200~300mg放入焚烧纸杯,每个样品称取3个平行样,并滴入几滴饱和蔗糖溶液。该土壤在氧化焚烧炉(Oxidizer 306,PerkinElmer,德莱艾希,德国)中焚烧,生成的14CO2经8mLCarbsorbe E和12mLPermafluor E吸收并在液闪仪上测定其放射性含量[24]。

1.6 气相色谱(GC)测定条件

经纯化的H C B和D D T样品用气相色谱(ThermoQuestTrace 2000,Egelsbach,德国),联合PTV进样器,DB-5毛细管柱(长30m,内径0.32mm,涂层厚度0.25μm,J&W Scientific,美国)和ECD检测器进行测定,并通过外标法定量。GC 测定氯苯条件:PTV进样器升温程序为3min内从50℃至300℃;炉温程序为60℃持续2min,10℃min-1升温至220℃。GC测定DDT条件:PTV进样器升温程序为3min内从50℃到300℃;炉温程序为50℃持续1min,30℃min-1升温至220℃并持续2 min,2℃min-1升温至250℃,10℃min-1升温至270℃。

2 结果与讨论

2.1 水稻土和甘蔗地土壤中HCB和DDT的矿化和挥发

图2所示为14C-HCB和14C-DDT分别在水稻土和甘蔗地土壤中的14CO2累积生成量。经过84d的好氧培养,水稻土和甘蔗地土壤中14C-HCB和14CDDT的累积矿化量分别达到0.14%和3%。14C-DDT培养组的累积矿化量超过14C-DDT标准品的杂质含量(2%),并且其矿化速率在2%之后没有明显衰减,说明14CO2主要产生于14C-DDT而非放射性杂质。然而对于14C-HCB,0.14%的矿化量不能说明14CO2产生于14C-HCB母体化合物。Boul等[25]的研究结果显示,非淹水土壤中培养42d14C-DDT矿化量<0.7%,在淹水土壤中没有观察到矿化现象。Andréa等[20]采用砂壤土培养6周也未观测到14CDDT矿化生成14CO2。Kengara等[24]采用水稻土壤和甘蔗地土壤厌氧—好氧循环培养461d,结果非堆肥处理组14C-HCB的累积矿化量仅分别为0.3%和0.4%。由此可见,尽管HCB和DDT在土壤中的浓度明显下降(图6),但并不代表被完全消除。

水稻土和甘蔗地土壤中14C-DDT的累积矿化量显著高于14C-HCB。本试验选取的DDT和HCB分别代表了POPs中的低氯代和高氯代污染物。已有研究表明土壤微生物对高氯代POPs的降解能力要明显弱于低氯代POPs[26]。POPs的降解主要依靠好氧微生物产生的双加氧酶或木质素降解酶等进行苯环氧化[27],氯取代基团因存在空间位阻效应,阻碍酶反应进行。

水稻土和甘蔗地土壤中来自14C-HCB和14CDDT矿化的累积14CO2生成量没有显著性差异(α = 0.05)(图2)。而研究显示DDT及其主要代谢产物在水稻土中的残留量往往较甘蔗地土壤低[3,5,16,19]。一方面原因是因为旱地(棉花地等)在持续施用含有DDT的农药化学品,如三氯杀螨醇[8];另一方面是因为水稻土经历厌氧—好氧交替循环。厌氧预培养往往能够强化氯代有机物的降解,对于HCB,厌氧阶段的还原脱氯能够辅助好氧阶段的微生物酶对HCB的矿化降解,苯环氯原子脱去后有利于双加氧酶或木质素降解酶等功能酶进行苯环羟基化反应[28-30]。因此,多重厌氧—好氧循环显著增加了14C-HCB的矿化量[24]。对于DDT,厌氧还原脱氯反应主要生成DDD,而DDD很难发生进一步还原脱氯反应。DDT或DDD共代谢降解菌在厌氧环境中的繁殖扩增可能是其强化降解的主要原因,异化铁还原菌和地杆菌等能够直接以氯代有机物作为电子受体发生还原脱氯反应[31],苯环和苯酚矿化代谢菌在厌氧条件下能够直接矿化降解五氯酚、2,4,6-三溴酚等物质[32-33],这类降解菌在厌氧条件下也可能作用于DDT。水稻土和甘蔗地土壤除了理化性质的差异外,土壤微生物的群落及功能也存在差异。由于水稻土长期经历厌氧—好氧循环,水稻土中厌氧微生物多样性明显较甘蔗地土壤丰富,在厌氧环境下更有利于DDT的共代谢矿化降解,甘蔗地土壤中的好氧微生物多样性高于水稻土,有利于降解氯取代基相对较少的氯苯类物质。本研究采用的是好氧条件,该条件下,水稻土和甘蔗地土壤中的微生物对HCB和DDT的矿化优势可能均未得到发挥。因此,HCB和DDT在这两类土壤中的矿化没有显著性差异(图2)。

图3表示水稻土和甘蔗地土壤中来自14C-DDT 和14C-HCB的累积挥发性物质的量。经84d好氧培养,14C-DDT的总挥发量(<0.6%)高于14C-HCB的总挥发量(<0.2%)。尽管水稻土的HCB和DDT的累积挥发量均值高于甘蔗地土壤,但统计分析显示HCB和DDT在水稻土和甘蔗地土壤中的累积挥发量没有显著性差异(α = 0.05)。水稻土中累积挥发性物质的量相对较高可能是由于其有机质和黏粒含量均较甘蔗地土壤低,并且水稻土中含水量较甘蔗地土壤高,也有利于污染物的挥发。

图2 水稻土和甘蔗地土壤中来自14C-DDT和14C-HCB好氧矿化的14CO2累积生成量Fig. 2 Cumulative14CO2generated from aerobic mineralization of14C-DDT and14C-HCB in the paddy soil and sugarcane field soil

图3 水稻土和甘蔗地土壤中14C-DDT和14C-HCB的累积挥发性物质的量Fig. 3 Cumulative volatile compounds escaped from14C-DDT and14C-HCB in the paddy soil and sugarcane field soil

2.2 堆肥对老化DDT矿化和挥发的影响

DDT在水稻土和甘蔗地土壤中培养84d后,矿化率仅为3%,其余DDT在土壤中老化固定,与土壤腐殖质结合或进入黏土层间结构[20]。添加堆肥的目的在于研究外加碳源对老化DDT矿化的影响。1.25%质量比的堆肥添加量相当于加入了土壤10%全碳量和13%全氮量。对应实际应用,相当于每公顷16.25t施用量(以表层10 cm土层计)。如图4所示,堆肥处理并未显著影响14C-DDT在两类土壤中的矿化速率(α=0.05),但堆肥处理土壤中14CO2累积生成量高于非堆肥处理土壤。堆肥处理对污染物降解的影响具有两面性:一方面POPs的降解往往通过共代谢途径完成,在土壤养分贫瘠的情况下,外加有机碳源能够促进土壤微生物的活性从而强化共代谢降解[24]。另一方面,外加有机物料中含有的氮素和腐殖酸类物质能够作为电子受体发生电子竞争作用[18];大分子腐殖质等可能会吸附固定小分子污染物并降低其生物可利用性[8],从而阻碍POPs降解。添加堆肥能抑制污染物的挥发,但其影响在统计上并不显著(α=0.05)。造成挥发量下降的原因可能是堆肥中含有的有机碳如腐殖质等加强了HCB和DDT的吸附固定,从而降低了其挥发性。

2.3 HCB和DDT在水稻土和甘蔗地土壤中的降解产物和质量平衡

经84d好氧培养,水稻土和甘蔗地土壤中可萃取态HCB分别为27.3 ±4.6 μgg-1和28.3±3.2 μgg-1。氯苯产物中只有五氯苯(PeCB)被检测出,分别为0.016±0.003 μgg-1(水稻土)和0.020±0.006 μgg-1(甘蔗地土壤)。图5所示为14C-HCB归趋分布以及质量平衡,可以发现HCB在水稻土中的结合残留量(11.0%)显著高于甘蔗地土壤。

图6所示为DDT经过84d好氧培养与116d堆肥处理好氧培养以后的产物组成,在水稻土中可提取态p,p’-DDT的含量(16.5± 2.5 μgg-1)高于甘蔗地土壤中的含量(13.4± 0.8 μgg-1),主要降解产物为p,p’-DDD、p,p’-DDE 和p,p’-DDMU。水稻土较甘蔗地土壤生成了更多的p,p’-DDD,甘蔗地土壤较水稻土生成了更多的p,p’-DDE和p,p’-DDMU。堆肥处理降低了p,p’-DDT在水稻土和甘蔗地土壤中的可提取态残留浓度。由14C-DDT的质量平衡(图7)可知,“水稻土+堆肥”处理的表观DDT均值浓度低于“水稻土”,可能是因为前者14C-DDT的回收率仅为83%。而对于甘蔗地土壤,堆肥处理和非堆肥处理回收率分别达到92%和96%。甘蔗地土壤经堆肥处理DDT浓度降低可能是由于DDT更多地转化为DDE和DDMU(图6)。堆肥处理对DDT在水稻土中结合残留(Nonextractable residues,NER)没有影响,却导致甘蔗地土壤中DDT结合残留量增加。堆肥含有的有机碳如腐殖质等对DDT产生强吸附固定,从而增加了其结合残留,同时DDT的挥发量减少(图4)。

图4 堆肥处理对14C-DDT累积矿化量和累积挥发量的影响Fig. 4 The effect of compost application on the cumulative mineralization and cumulative volatilization of14C-DDT

图5 水稻土和甘蔗地土壤中14C物质的质量分布以及14C-HCB质量平衡Fig. 5 Fraction of14C-substance and mass balance of14C-HCB in the paddy soil and sugarcane field soil

图6 堆肥处理对水稻土和甘蔗地土壤中可提取态DDT及其代谢产物的影响Fig. 6 Effects of compost on ASE extractable DDT and its metabolites in the paddy soil and sugarcane field soil

图7 水稻土和甘蔗地土壤中14C物质的质量分布及14C-DDT质量平衡Fig. 7 Fraction of14C-substance and mass balance of14C-DDT in the paddy soil and the sugarcane field soil

3 结 论

由于好氧条件不利于发挥水稻土和甘蔗地土壤中微生物对氯代污染物的优势降解作用,好氧条件下水稻土和甘蔗地土壤中HCB和DDT的矿化均非常慢,土壤类型对HCB和DDT的矿化没有显著影响。厌氧培养是强化HCB和DDT矿化降解的关键步骤,HCB经厌氧培养发生还原脱氯生成次级少氯代产物,可以在好氧条件下被进一步羟基化,厌氧培养也有利于DDT共代谢厌氧微生物的繁殖扩增。因此,对不同污染物需要做针对性的厌氧—好氧交替管理,单纯的好氧降解往往不能有效地去除此类污染物。HCB和DDT在水稻土和甘蔗地土壤中的挥发均比较弱,说明土壤环境中挥发不是HCB和DDT的主要归趋途径。尽管HCB本身在高含水量土壤中的挥发性较弱,但是其次级代谢产物,特别是少于四个氯取代基的产物,挥发是其不可忽略的环境过程之一。尽管堆肥处理在统计学上对DDT的矿化和挥发的影响并不显著,但在总体趋势上堆肥处理略微增强了DDT在水稻土和甘蔗地土壤中的矿化量,减少了其在两类土壤中的挥发量,同时增加了DDT在甘蔗地土壤中的结合残留。从自然消解的角度,动植物残体腐化补充了土壤碳源,有利于DDT的共代谢消除;从工程修复应用的角度,好氧条件下外源碳对强化消除农田土壤中HCB和DDT类物质的贡献非常有限。

[1]Stockholm convention on persistent organic pollutants. Accessed in August 2009 at http://chm.pops.int/

[2]Wang G,Lu Y,Han J,etal.Hexachlorobenzene sources,levels and human exposure in the environment of China. Environment International,2010,36(1):122—130

[3]Guo Y,Yu H Y,Zeng E Y. Occurrence,source diagnosis,and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta,South China:A review. Environmental Pollution,2009,157(6):1753—1763

[4]WHO-World Health Organization. The use of DDT in malaria vector control:WHO position statement,Global Malaria Programme.2011.http://apps.who.int/ malaria/ddtandmalariavectorcontrol.html

[5]Gao H J,Jiang X,Wang F,et al.Residual levels and new inputs of chlorinated POPs in agricultural soils from Taihu Lake Region. Pedosphere,2005,15(3):301—309

[6]Wang F,Jiang X,BianY R,et al. Organochlorine pesticides in soils under different land usage in the Taihu Lake region,China. Journal of Environmental Sciences,2007,19(5):584—590

[7]万大娟,贾晓珊. 耕作土壤中多氯代有机污染物的含量与分布特征——以珠江三角洲部分地区为例. 环境科学学报,2005,25(8):1078—1084

Wan D J,Jia X S. Characterization and distribution of polychlorinated organic pollutants in soils with some areas of Pearl River Delat as an example(In Chinese). Acta Scientiae Circumstaniae,2005,25(8):1078—1084

[8]Wang F,Bian Y R,Jiang X,et al. Residual characteristics of organochlorine pesticides inLou soils with different fertilization modes. Pedosphere,2006,16(2):161—168

[9]Yang X L,Wang S S,Bian Y R,et al. Dicofol application resulted in high DDTs residue in cotton fields from northern Jiangsu Province,China. Journal of Hazardous Materials,2008,150(1):92—98

[10]Gao J H,Jiang X,Wang F,et al.Residual levels and bioaccumulation of chlorinated persistent organicpollutants(POPs)in vegetables from suburb of Nanjing,People’s Republic of China. Bulletin of Environmental Contamination and Toxicology,2005,74(4):673—680

[11]Singh S P,Bose P,Guha S,et al. Impact of addition of amendments on the degradation of DDT and its residues partitioned on soil. Chemosphere,2013,92 (7):811—820

[12]Matheus D R,Bononi V L R,Machado K M G. Biodegradation of hexachlorobenzene by basidiomycetes in soil contaminated with industrial residues. World Journal of Microbiology and Biotechnology,2000,16 (5):415—421

[13]Sudharshan S,Naidu R,Mallavarapu M,et al. DDT remediation in contaminated soils:A review of recent studies. Biodegradation,2012,23(6):851—863

[14]魏海江,杨兴伦,叶茂,等. 活化过硫酸钠氧化法修复DDTs污染场地土壤研究. 土壤,2014,46(3):504—511 Wei H J,Yang X L,Ye M,et al. Application of activated persulfate oxidation method in degradating DDT in field contaminated soil(In Chinese). Soils,2014,46(3):504—511

[15]Nyer EK,Duffin ME.The state of the art of bioremediation. Groundwater Monitoring & Remediation,1997,17(2):64—69

[16]Hao H T,Sun B,Zhao Z H. Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils. Environmental Pollution,2008,156(3):1046—1052

[17]Bento F M,Camargo F A O,Okeke B C,et al. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation,biostimulation and bioaugmentation. Bioresource Technology,2005,96 (9):1049—1055

[18]Liu C Y,Jiang X,Yang X L,et al. Hexachlorobenzene dechlorination as affected by organic fertilizer and urea applications in two rice planted paddy soils in a pot experiment. Science of the Total Environment,2010,408(4):958—964

[19]赵月春,付蓉,莫测辉,等. 土壤类型与污染浓度对漆酶修复DDT污染土壤的影响. 生态环境,2008,17 (2):611—614

Zhao Y C,Fu R,Mo C H,et al. Effect of soil types and pollution levels on remediation of DDT soil pollution by laccase(In Chinese). Ecology and Environment,2008,17(2):611—614

[20]Andréa M M,Tomita R Y,Luchini L C,et al. Laboratory studies on volatilization and mineralization of14C-p,p’-DDT in soil,release of bound residues and dissipation from solid surfaces. Journal of Environmental Science and Health:Part B,1994,29(1):133—139

[21]Schroll R,Becher H H,Dörfler U,et al.Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environmental Science & Technology,2006,40 (10):3305—3312

[22]Lang YH,Jiang X,Martens D,et al. Comparison of extraction techniques with different solvents for DDT analogues in sediments. Pedosphere,2005,15(5):628—633

[23]EPA method 3620C:Florisil cleanup,part of test methods for evaulating solid waste,physical/chemical methods. https://www.epa.gov/sites/production/ files/2015-12/documents/3620c.pdf

[24]Kengara F O,Doerfler U,Welzl G,et al.Enhanced degradation of14C-HCB in two tropical clay soils using multiple anaerobic-aerobic cycles. Environmental Pollution,2013,173:168—175

[25]Boul HL. Effect of soil moisture on the fate of radiolabelled DDT and DDE in vitro. Chemosphere,1996,32(5):855—866

[26]赵晓祥,任昱宗,庄惠生. 多氯联苯的生物降解研究.环境科学与技术,2007,30(10):94—97 Zhao X X,Ren Y Z,Zhuang H S. Study of biodegradation of polychlorinated biphenyls(In Chinese). Environmental Science and Technology,2007,30(10):94—97

[27]Pieper D H. Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology,2004,67(2):170—191

[28]Hay A G,Focht D D. Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane(DDD)by ralstonia eutropha strain A5. FEMS Microbiology Ecology,2000,31(3):249—253

[29]Kamanavalli C M,Ninnekar H Z.Biodegradation of DDT by a pseudomonas species. Current Microbiology,2004,48(1):10—13

[30]Purnomo A S,Mori T,Kondo R.Involvement of fenton reaction in DDT degradation by brown-rot fungi. International Biodeterioration & Biodegradation,2010,64(7):560—565

[31]Jin X,Wang F,Gu C G,et al.The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions. Chemosphere,2015,138:18—24

[32]Tong H,Liu CS,Li FB,et al. The key microorganisms for anaerobic degradation ofpentachlorophenol in paddy soil as revealed by stable isotope probing. Journal of Hazardous Materials,2015,298:252—260

[33]Li Z L,Inoue Y,Suzuki D,et al. Long-term anaerobic mineralization of pentachlorophenol in a continuousflow system using only lactate as an external nutrient. Environmental Science & Technology,2013,47 (3):1534—1541

Natural Attenuation of14C-HCB and14C-DDT in Kenya Paddy Soil and Sugarcane Field Soil

JIN Xin1,3,4Fredrick Orori Kengara2,3WANG Fang1GU Chenggang1YANG Xinglun1Ulrike Dörfler3Reiner Schroll3Jean Charles Munch3JIANG Xin1,4†
(1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Department of Chemistry,Maseno University,Maseno 40105,Kenya)
(3 Research Unit Microbe-Plant Interactions,Helmholtz ZentrumMünchen,Munich 85764,Germany)
(4 University of Chinese Academy of Sciences,Beijing 100049,China)

【Objective】Contamination of farmland soils with persistent organic pollutants(POPs)is still a problem of environmental concerns. Take hexachlorobenzene(HCB)and 1,1,1-trichloro-2,2-bis-4-chlorophenyl ethane(DDT)for example,pollution of farmland soils is generally characterized by being low in concentration and vast in area,and new pollutants flow in unceasingly from non-point sources. Farmland soils are rich in microorganisms,which potentially play a significant role in degrading such POPs. 【Method】In this study,HCB and DDT were selected as representative of highly chlorinated and low chlorinated POPs,respectively,and soils were collected from a years-long paddy field and a years-long sugarcane field for use to study potentials of the soils naturally attenuating HCB and DDT.14C-labeled HCB and14C-labeled DDT were used for tracing mineralization,volatilization,metabolites,and bound residues to overcome the shortage of the traditional methods for studying the degradation of compounds. Traditional methods merely monitor the concentrations of the mother compound and/or the metabolites which may be sheltered in soil matrix via adsorption,and result in overestimating of the degradation extent. 【Result】Results showed that14C-HCB and14C-DDT were spiked respectively into the paddy soil and the sugarcane field soil,and then incubated aerobically under the optimal water content(63% for paddy soil,35% for sugarcane field soil)in an attempt to get the highest mineralization rate. Both the14CO2and the14C-volatiles were trapped by specific liquid in a closed system and measured with a scintillation counter.14CO2production corresponds to mineralization degree of the compounds. After 84 days of incubation,only 0.14% of14C-HCB and 3% of14C-DDT were mineralized. ASE extraction showed that penta-chlorobenzene was the only detected metabolites of HCB. DDD,DDE and DDMU were found to be the main metabolites of DDT. In the paddy soil samples,DDD was relatively higher in concentration,whereas in the sugarcane field soil samples DDE was. The extremely low mineralization extents indicate that soils are very low in potential of attenuating HCB and DDT naturally. Mere aerobic treatment is not adequate to remove HCB and DDT from soil. It is thereby inferred that it is necessary to treat the polluted soil anaerobically to remove such compounds,because in anaerobic incubation HCB would undergo reductive dechlorination which favors aerobic hydroxylation of benzene rings by dioxygenase or lignoltic enzymes,and anaerobic incubation may probably promote the growth of potential DDT degraders,like the benzene-and phenol-mineralization microorganisms that can trigger ring-cleavage reaction.Comparison between HCB and DDT in the total mineralization indicates that under aerobic conditions,high chlorinated compounds are much more persistent than the lower chlorinated compounds. HCB and DDT were quite low in volatilization,being in the range 0.1%~0.6%,which indicates volatilization is not an important process of HCB and DDT in environment. Besides,compost from garden waste was introduced into the DDT incubation experiment to simulate effects of exogenous carbon on mineralization and volatilization of DDT. Results show that the compost increased the mineralization and the non-extractable bound residues of DDT,but reduced the volatilization of the substance;however,the effects were not statistically significant. From an engineering application view,the use of compost to enhancing DDT mineralization was not cost effective. 【Conclusion】All the findings in this study may serve as reference of good reasons forunderstanding the natural attenuation of the chlorinated organic compounds in natural soils,and for remediation of soils polluted with such compounds. Since paddy soil and sugarcane field soil have their own specific dominant degradation mechanisms,it is more advisable to design case-specific strategies,anaerobic,aerobic or anaerobic-aerobic alternation,to have the pollutants degraded the most efficiently.

Persistent organic pollutants;Compost;Mineralization;Volatilization;Bound residues

X53

A

10.11766/trxb201603300126

(责任编辑:檀满枝)

* 国家重点基础研究发展计划(973计划)(2014CB441105)、江苏省杰出青年基金项目(BK20150050)和国家自然科学基金项目(21277148,21377138和41271327)资助 Supported by the National Key Basic Research Program of China(No. 2014CB441105),the Outstanding Youth Foundation of National Science of Jiangsu Province(No. BK20150050),National Natural Science Foundation of China(Nos. 21277148,21377138,41271327)

† 通讯作者 Corresponding author,E-mail:jiangxin@issas.ac.cn

金 鑫(1986—),男,江苏南通人,博士研究生,主要从事土壤有机污染修复与阻控研究。E-mail:xjin@ issas.ac.cn

2016-03-30;

2016-06-21;优先数字出版日期(www.cnki.net):2016-08-26

猜你喜欢

氯苯矿化甘蔗
柚皮苷对早期釉质龋再矿化的影响
大麦虫对聚苯乙烯塑料的生物降解和矿化作用
基于复合胶凝材料的CO2矿化养护实验研究
氧化钙抑制固体废物焚烧过程中氯苯生成
铁矾渣中有价金属的微生物矿化-浮选回收可能性和前景
甘蔗的问题
爱咬甘蔗的百岁爷爷
23个甘蔗品种对甘蔗黑穗病的抗性测定
黑熊吃甘蔗
2-(4-氯苯氨基)甲基苯酚降解的动力学研究