氮肥用量对两种不同类型玉米杂交种物质生产及氮素利用的影响
2017-02-20周培禄李从锋
周培禄 任 红 齐 华 赵 明,* 李从锋,*
氮肥用量对两种不同类型玉米杂交种物质生产及氮素利用的影响
周培禄1任 红2齐 华2赵 明1,*李从锋1,*
1中国农业科学院作物科学研究所 / 农业部生理生态重点实验室, 北京100081;2沈阳农业大学, 辽宁沈阳110161
旨在探明东北春玉米不同类型杂交种物质生产及氮素利用特征及其与产量的关系。本文以不同类型杂交种代表性品种郑单958 (ZD958, Reid×唐四平头模式)和先玉335 (XY335, Reid×Lancaster模式)为试验材料, 2014年和2015年设置5个氮肥水平[0 kg hm–2(N0)、100 kg hm–2(N1)、200 kg hm–2(N2)、300 kg hm–2(N3)和400 kg hm–2(N4)]和2个种植密度(67 500株 hm–2和90 000株 hm–2)试验, 比较研究了不同类型玉米杂交种干物质与氮素积累、运转及氮素利用的差异规律。结果表明, 两年XY335品种的最高籽粒产量均高于ZD958, 最优氮肥施用量明显降低4.8%~10.6%; 相比ZD958, 不施氮处理, 两种种植密度下XY335品种干物质积累能力及物质运转效率都明显降低, 而施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加, 同时增幅随着施氮量增加逐步提高, 且在高密度条件下优势更为明显。开花期XY335叶片与茎鞘氮素含量显著高于ZD958 (<0.05), 而成熟期由于其较高物质的运转效率表现出明显较低的数值, 籽粒氮素含量在高密度下差异较小, 而低密度条件下相对ZD958显著提高(<0.05)。施氮条件下XY335品种花前、花后氮素积累量和氮素积累总量均高于ZD958, 其中叶片中氮素的转运对籽粒的贡献率显著较高(<0.05)。两种种植密度处理最优施氮条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958 (<0.05), 而氮农学利用率和氮肥偏生产力差异不显著。可见, 高密度条件下XY335类型品种表现出明显较高的物质积累能力以及花后物质运转对籽粒的贡献率, 获得较高的氮素利用效率, 表现出明显高氮高效的品种特征, 因此生产上建议, 东北春玉米区高密度种植条件下该类型品种在较高氮肥施用量时易获得高产高效。
玉米杂交种; 氮肥; 物质生产; 氮素利用
玉米是重要的粮食、饲料和工业原料作物, 在我国人多地少和能源资源受限的基本国情下, 如何协同提高玉米产量和养分效率是当前农业上面临的重大课题[1-2], 挖掘玉米自身遗传潜力, 培育氮高效品种在提高玉米产量潜力、氮肥利用效率和耐低氮胁迫的研究中具有重要作用[3], 而不同类型玉米品种的氮素利用状况分析对品种的高产高效至关重要。
我国育种家通过不同优势群自交系选择组配探索出国内的Reid×唐四平头、Reid×旅大红骨和国外Reid×Lancaster,成为我国玉米育种中主要应用的杂种优势模式[4-5]。目前以郑单958为代表Reid×唐四平头和先玉335为代表Reid×Lancaster及其改良模式成为我国玉米生产上利用的主要类型杂交种[6]。不同遗传背景玉米抗逆性较强品种增产主要是增强了对高密条件及非生物逆境适应的能力[7-8]。不同玉米品种干物质积累与氮素吸收和利用方面存在显著的差异[9-10]。施肥可以显著提高玉米干物质积累量和自身产量[11], 同一品种在不同氮素供应条件下的氮素积累特征也存在差异[12]。在一定施氮水平下, 随着氮肥用量增加, 玉米营养器官氮素转运量和对籽粒的贡献率增加, 但过量施肥使氮素向籽粒的运转减少, 氮素利用率和产量降低[13]。在高氮肥水平下, 吐丝期前茎鞘干物质转移量和吐丝期后干物质合成量共同决定了品种间产量的差异[14]。
刘建安等[1]根据品种氮效率和氮响应度为聚类分析将品种分为4个氮效率类型, 双高效型(efficient- efficient, EE)在高水平和低水平氮条件均有高氮效率; 高氮高效型(high-nitrogen efficient, HNE)只有在高氮水平才有高氮效率; 低氮高效型(low-nitrogen efficient, LNE)只有在低氮水平才有高氮效率; 双低效型(nonefficient–nonefficient, NN)在低氮、高氮水平下氮效率均较低, 氮高效品种在高产或超高产栽培和氮高效育种过程具有重要作用[9]。研究表明在夏玉米种植区, 先玉335和郑单958均具有较高的干物质积累量和氮素积累量, 生育后期较高的氮素吸收能力是玉米氮高效的一个重要特征[14]。Worku等[15]指出, 不同氮效率基因型相比, 氮高效基因型中氮的高效吸收主要表现在生育后期。然而关于高密度条件下春玉米不同类型杂交种对氮肥的响应及其物质运转特征尚不明确。因此, 本试验比较研究了东北春玉米区不同类型品种的物质生产和氮素高效利用特征, 以期为玉米氮高效利用及氮高效品种选育提供有益借鉴。
1 材料与方法
1.1 试验设计
试验分别于2014年和2015年在中国农业科学院作物科学研究所公主岭试验基地(43º31′N, 124º48′E)进行, 土壤类型为黑土, pH 6.3, 含有机质26.2 g kg–1、全氮1.6 g kg–1、碱解氮143.3 mg kg–1、速效磷64.4 mg kg–1、速效钾150.5 mg kg–1。
选用郑单958 (ZD958, Reid×唐四平头模式)和先玉335 (XY335, Reid×Lancaster模式)为材料。设5个氮肥水平, 分别为0 kg hm–2(N0)、100 kg hm–2(N1)、200 kg hm–2(N2)、300 kg hm–2(N3)和400 kg hm–2(N4), 尿素为肥源; 两个密度水平, 分别为67 500株 hm–2和90 000株 hm–2; 每处理小区面积为36 m2(4.8 m×7.5 m), 磷肥(过磷酸钙)和钾肥(硫酸钾)施用量均为100 kg hm–2, 采用60 cm等行距起垄种植模式, 其他栽培管理措施同高产田。
1.2 测定项目与方法
1.2.1 植株全氮的测定 分别于关键生育时期, 按小区选取代表性植株5株, 将每样分成茎鞘、叶和籽粒(吐丝后), 105℃下杀青30 min, 80℃下烘干至恒重, 测定干物质重, 之后粉碎过100目筛, 采用半微量凯氏定氮法测定氮含量。
1.2.2 测产和考种 成熟期, 从每小区连续收取中间3行的30个果穗用于考种和测产。
1.3 数据计算与统计方法
1.3.1 数据计算 线性-平台模型函数式(L+P)为[16-17]=+, 1.3.2 同化物分配计算 干物质转运率(%)=[(开花期干物质积累量-成熟期干物质积累量)/开花期干物质积累量]×100; 氮素转运量(g m–2)=开花期氮积累量-成熟期氮积累量; 氮素转运率(%)=[氮转运量/开花期氮积累量]×100; 氮素贡献率(%)=[氮转运量/籽粒氮积累量]×100; 花后氮积累量(g m–2)=成熟期植株氮积累总量-开花期植株氮积累总量; 花后氮籽粒贡献率(%) =[花后氮积累量/籽粒氮积累量]× 100[18]。 1.3.3 氮利用效率计算 氮肥利用率(nitrogen use efficiency, NUE)=籽粒产量/植株氮积累总量; 氮肥农学效率(agronomic N use efficiency, ANUE)=(施氮区产量-不施氮区产量)/施氮量; 氮吸收利用率(N recovery efficiency, NRE) = [(施氮区植株氮积累总量-无氮区植株氮积累总量)/氮肥施用量]×100; 氮肥偏生产效率(partial factor productivity of applied N, PFPN)=施氮区产量/施氮量[19]。 1.3.4 数据分析 用Microsoft Excel 2013处理数据, SigmaPlot 12.0作图, SPSS 19.0统计分析。 2.1 产量对氮肥水平的响应 由图2可知, XY335和ZD958产量与施氮量的关系符合线性加平台模型(<0.05)。在不施氮肥条件下, 两密度处理XY335产量均低于ZD958 (<0.05), 在施氮条件下, 两密度处理最高产量XY335均高于ZD958, 在低密度处理平均增产2.6%~4.4%, 最优施肥量降低4.8%~5.0% (<0.05), 在高密度处理平均增产4.0%~6.7% (<0.05), 最优施肥量降低6.6%~ 10.6%。 2.2 干物质积累与分配 由表1可知, 在不施氮条件下, 两密度处理XY335的干物质积累量、花后干物质积累量及干物质转运效率均显著低于ZD958 (<0.05); 在施氮条件下, XY335品种的干物质积累量、花后干物质量均高于ZD958, 且增幅随着施氮量增加逐步提高, 此时, 花后干物质运转量、运转率及贡献率表现为XY335较ZD958提高; 在高密度处理, XY335的干物质积累量、花后干物质积累量的优势更明显。 2.3 不同器官氮素含量 由表2可知, 在开花期XY335的茎鞘和叶的氮含量均高于ZD958, 在低密度条件下分别较ZD958提高4.0%和7.1%, 而高密度条件下提高不显著; 在成熟期XY335的茎鞘和叶的氮含量低于ZD958, 低密度处理降幅分别达到19.3%和10.9%, 籽粒氮含量较ZD958提高8.1% (<0.05), 而在高密度处理分别较ZD958降低4.0%和6.8%, 籽粒氮素含量较ZD958略有提高。 2.4 氮素积累、分配及对籽粒的贡献 由表3可知, 对于花前氮素积累量, 两密度处理XY335分别较ZD958提高7.0%和5.3%; 成熟期氮素总积累量两密度处理分别较ZD958提高3.6%和2.7%, 其中籽粒氮积累量分别较ZD958提高15.4%和11.5%; 花后氮素积累量均表现为XY335高于ZD958, 且高密度条件下XY335的优势明显提高。 2014年, 图A和图C密度分别为D1和D2; 2015年, 图B和图D密度分别为D1和D2。 Panels A and C present D1 and D2, respectively, in 2014; Panels B and D present D1 and D2, respectively, in 2015. 由表4知, 随着施氮量的增加, 两品种的氮素转运量均提高, 而转运率和贡献率降低。两种植密度条件下, 氮素转运量XY335分别较ZD958提高29.6%和14.0%, 氮素运转率与籽粒贡献率分别较ZD958提高13.4%和6.0%与11.7%和7.2%; XY335茎鞘和叶片的氮素转运量和转运率均高于ZD958, 其中叶片的贡献率分别较ZD958提高34.1%和11.9%, 而茎鞘贡献率品种间差异不显著。 2.5 氮素利用效率 由表4可知, 在不施氮肥条件下, 两密度处理XY335的氮素利用效率均低于ZD958, 且高密度条件下降幅增加; 施氮肥条件下, 氮素利用效率、氮素吸收效率、氮农学利用率和氮肥偏生产力高于ZD958, 其中在最优施氮量条件下, 两密度处理的氮素利用效率和氮素吸收效率XY335均显著高于ZD958 (< 0.05), 而氮农学利用率和氮肥偏生产力差异不显著。 作物产量是其基因与环境互作的结果, 不同基因型品种的生长发育和产量潜力对种植密度和氮肥用量表现有较大的响应差异[20]。我国玉米生产上不同遗传背景主要类型杂交种代表性品种郑单958 (Reid×唐四平头)和先玉335 (Reid×Lancaster)[6], 其对高密度种植及非生物逆境表现出明显的适应能力[7]。陈新平等[16]研究表明, 通过线性+平台模型拟合作物对氮肥的反应并进行氮肥推荐具有较高的拟合度, 在对氮肥利用率影响的研究中具有最佳的环境效益。本研究认为, 相比ZD958, 高密度条件下XY335类型品种表现出一定的增产潜力, 每单位千克籽粒的需氮量显著下降, 最优氮肥施用量降低4.8%~10.6%, 春播种植条件也表现出明显高氮高效的品种特征。由于东北春玉米区域年季间气候差异较大, 两年试验产量和最优氮肥用量存在一定差异。这些结果都与高密度条件下加快了该类型品种干物质和氮素向籽粒的转移效率、提高了植株碳氮运转效率密切相关。 表1 不同类型玉米杂交种的开花期、成熟期及花后干物质积累的差异 同一列内同一品种数据后不同字母表示处理间差异显著(=5)。N0: 0 kg hm–2纯氮; N1: 100 kg hm–2纯氮; N2: 200 kg hm–2纯氮; N3: 300 kg hm–2纯氮; N4: 400 kg hm–2纯氮。 n each cultivar, means followed by a different letter within columns are significantly different at 0.05 probability level (=5). N0: 0 kg hm–2N; N1: 100 kg hm–2N; N2: 200 kg hm–2N; N3: 300 kg hm–2N; N4: 400 kg hm–2N. CGDDR: contribution to grain DW by DW remobilization. 表2 不同类型玉米杂交种各器官开花期和成熟期的氮素含量 同一列内同一品种数据后不同字母表示处理间差异显著(=5)。N0: 0 kg hm–2纯氮; N1: 100 kg hm–2纯氮; N2: 200 kg hm–2纯氮; N3: 300 kg hm–2纯氮; N4: 400 kg hm–2纯氮。 In each cultivar, means followed by a different letter within columns are significantly different at 0.05 probability level (=5). N0: 0 kg hm–2N; N1: 100 kg hm–2N; N2: 200 kg hm–2N; N3: 300 kg hm–2N; N4: 400 kg hm–2N. 表5 不同类型玉米杂交种的氮素利用效率、氮农学利用效率、氮吸收效率和氮肥偏生产力 同一列内同一品种数据后不同字母表示处理间差异显著(=5)。N0: 0 kg hm–2纯氮; N1: 100 kg hm–2纯氮; N2: 200 kg hm–2纯氮; N3: 300 kg hm–2纯氮; N4: 400 kg hm–2纯氮。 In each cultivar, means followed by a different letter within columns are significantly different at the 0.05 probability level (=5). N0: 0 kg hm–2N; N1: 100 kg hm–2N; N2: 200 kg hm–2N; N3: 300 kg hm–2N; N4: 400 kg hm–2N. 氮素利用效率是作物遗传改良的重点和高产氮高效协同的最佳指标[21], 取决于干物质积累和干物质向籽粒的有效分配[22], 其分配数量和方向受种植密度和氮肥管理调控[23], 调控效应在品种间差异很大[12]。本研究认为, 相比郑单958, 不施氮处理两种种植密度下XY335品种干物质积累能力及物质运转效率都明显降低, 而施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加, 同时增幅随着施氮量增加逐步提高, 且在高密度条件下优势更为明显; 在氮肥胁迫条件下XY335类型品种的叶片早衰严重, 叶片光合作用受阻明显, 高种植密度下个体间和个体内营养竞争加剧[14], 使花后干物质转运量、转运率以及对籽粒的贡献率显著降低; 在正常施氮条件下XY335干物质积累量明显高于ZD958, 尤其是花后干物质的积累量显著提高, 表明在施氮处理更有利于XY335充分发挥其高氮高效的特点, 增加花后物质生产及分配效率, 促进籽粒产量和氮效率提高。这也可能与遗传改良过程中骨干亲本产量、物质运转效率及氮效率的提高密切相关[24]。 氮素养分的吸收是同化物合成和积累的基础[25], 增加氮肥的施用量使群体干物质和籽粒产量显著增加, 但不同氮效率品种之间差异较大[14], 这是由于氮素积累和分配存在明显的基因型差异, 氮高效品种有较高氮素积累量或氮素利用效率[26-27], 且氮素向籽粒的分配比例明显大于氮低效品种[28]。本研究表明, XY335类型品种的氮素吸收能力对种植密度的响应表现出明显的基因型差异, 其中开花期XY335叶片与茎鞘的氮素含量显著高于ZD958, 而成熟期各器官氮素含量由于其较高物质的运转效率表现出明显较低水平, 且在高密度条件下更为显著。表明在较高氮肥条件下其花后氮素的吸收量增加, 从而减缓叶片等光合器官氮素的输出, 以维持光合活性[15], 同时花后吸收的氮素分配到籽粒中的比例对产量起决定性的作用[29]。进一步比较研究表明, 施氮条件下XY335类型花前、花后氮素积累量和氮素积累总量均高于ZD958, 其中叶片中氮素的转运对籽粒的贡献率显著较高。这可能由于籽粒氮素积累量的增加源自生育后期较高的氮素转运率, 促进茎鞘和叶片氮素向籽粒转移, 其中叶片中氮素的转运对籽粒的贡献在花后氮素转运中起到决定性的作用。 李淑文等[30]的研究表明, 氮高效品种籽粒生产能力和氮效率增大的重要生理基础是在氮胁迫条件下生育后期具有较强的吸收利用能力, 现代品种亲本自交系主要通过提高物质运转效率维持较高的籽粒灌浆速率和氮素利用效率[25], 本研究表明, 两种种植密度下最优施氮条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958 (< 0.05), 而氮农学利用率和氮肥偏生产力差异不显著。氮素吸收效率和利用效率对氮效率基因型差异的相对重要性随作物种类、基因型和环境条件的变化而变化[31], 也是生产中常用以衡量氮素利用效率的指标[32]。总之, 高密度条件下XY335类型品种表现出明显较高的物质积累能力、花后物质运转效率及氮素利用效率, 具有明显的高氮高效的品种特征。在生产上, 建议高密度种植条件下该类型品种以较高氮肥施用量(175~210 kg hm–2)更易实现高产高效。 XY335品种的最高籽粒产量均高于ZD958, 最优氮肥施用量明显降低4.8%~10.6%。施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加, 同时增幅随着施氮量增加逐步提高, 且在高密度条件下优势更为明显。施氮条件下XY335品种花前、花后氮素积累量和氮素积累总量均高于ZD958, 其中叶片中氮素的转运对籽粒的贡献率显著较高。最优氮施用量条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958 (<0.05), 而氮农学利用率和氮肥偏生产力差异不显著。可见, 高密度条件下XY335类型品种表现出明显较高的物质积累能力、花后物质运转效率及氮素利用效率, 在春播条件下具有明显的高氮高效的品种特征。 [1] 刘建安, 米国华, 张福锁. 不同基因型玉米氮效率差异的比较研究. 农业生物技术学报, 1999, 7: 248–254 Liu J A, Mi G H, Zhang F S. Difference in nitrogen efficiency among maize genotypes., 1999, 7: 248–254 (in Chinese with English abstract) [2] Chen F J, Fang Z G, Gao Q, Ye Y L, Jia L L, Yuan L X, Mi G H, Zhang F S. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China., 2013, 43: 342–350 [3] 刘宗华, 卫晓轶, 胡彦民, 谭晓军, 汤继华. 低氮胁迫对不同基因型玉米生物产量和氮吸收率动态变化的影响. 玉米科学, 2010, 18(5): 53–59. Liu Z H, Wei X Y, Hu Y M, Tan X J, Tang J H. Dynamic variation of biomass and nitrogen absorption ratio of different genotypes in maize under low nitrogen stress.2010, 18(5): 53–59 (in Chinese with English abstract) [4] 张世煌, 彭泽斌, 李新海. 玉米杂种优势与种质扩增、改良和创新. 中国农业科学, 2000, 33(增刊-1): 34–39 Zhang S H, Peng Z B, Li X H. Heterosis and germplasm enhancement, improvement and development of maize., 2000, 33(suppl-1): 34–39 (in Chinese with English abstract) [5] 王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂优模式研究. 玉米科学, 1998, 6(1): 9–13 Wang Y B, Wang Z H, Lu L X, Wang Y P, Zhang X, Tian Z Y. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China., 1998, 6(1): 9–13(in Chinese with English abstract) [6] 丰光, 李妍妍, 邢锦丰, 黄长玲. 美国先锋玉米育种经验的启示. 玉米科学, 2010, 18(2): 133–135 Feng G, Li Y Y, Xing M F, Huang C L. Enlightenment of maize breeding from pioneer USA., 2010, 18(2): 133–135 (in Chinese with English abstract) [7] Tuberosa R, Gill B S, Quarrie S A. Cereal genomics: ushering in a brave new world., 2002, 48: 445–449 [8] 杨晓钦, 张仁和, 薛吉全, 邰书静, 张兴华, 路海东, 郭艳萍, 郭德林. 非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响. 作物学报, 2013, 39: 1325−1329 Yang X Q, Zhang R H, Xue J Q, Tai S J, Zhang X H, Lu H D, Guo Y P, Guo D L. Effects of abiotic stress on yield traits of maize hybrids and their parental inbred lines.2013, 39: 1325–1329 (in Chinese with English abstract) [9] Yan P , Yue S C , Qiu M L, Chen X P, Cui Z L, Chen F J. Using maize hybrids and in-season nitrogen management to improve grain yield and grain nitrogen concentrations., 2014, 166: 38–45 [10] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较:模拟与应用. 中国农业科学, 2009, 42: 843–853Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: simulation and application., 2009, 42: 843–853 (in Chinese with English abstract) [11] 申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. 植物营养与肥料学报, 2005, 11: 314–319 Shen L X, Wang P, Zhang R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density., 2005, 11: 314–319 (in Chinese with English abstract) [12] 米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13: 155–159Mi G H, Chen F J, Chun L, Guo Y F, Tian Q Y, Zhang F S. Biological characteristics of nitrogen efficient maize genotypes., 2007, 13: 155–159 (in Chinese with English abstract) [13] 吕鹏, 张吉旺, 刘伟, 杨今胜, 苏凯, 刘鹏, 董树亭, 李登海. 施氮时期对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011, 17: 1099–1107 Lyu P, Zhang J W, Liu W, Yang J S, Su K, Liu P, Dong S T, Li D H. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions., 2011, 17: 1099–1107 (in Chinese with English abstract) [14] 崔超, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢岷.不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究. 植物营养与肥料学报, 2013, 19: 1337–1345 Cui C, Gao J L, Yu X F, Wang Z G., Sun J Y, Hu S P, Su Z J, Xie M. Dry matter accumulation and nitrogen migration of high-yielding spring maize for different nitrogen efficiency in the flowering and milking stages.2013, 19: 1337–1345 (in Chinese with English Abstract) [15] Worku M, Banziger M, Setal E G. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids., 2007, 47: 519–28 [16] 陈新平, 周金池, 王兴仁, 张福锁, 宝德俊, 贾晓红. 小麦–玉米轮作制中氮肥效应模型的选择——经济和环境效益分析.土壤学报, 2000, 37: 346–354 Chen X P, Zhou J C, Wang X R, Zhang F S, Bao D J, Jia X H. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter–wheat and summer–corn rotation system., 2000, 37: 346–354 (in Chinese with English Abstract) [17] Cerrato M E, Blackmer A M. Comparison of models for describing corn yield response to nitrogen fertilizer.1990, 82: 138–143 [18] Despo K P, Gagianas A. Nitrogen and dry matter accumulation remobilization and losses for Mediterranean wheat during grain filling.1991, 83: 864–870 [19] Cassman K G, Peng S, Olk D C, Ladhab J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems., 1998, 56: 7–38 [20] 郑洪建, 董树亭, 王空军, 郭玉秋, 胡昌浩, 张吉旺. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001, 27: 862–868 Zheng H J, Dong S T, Wang K J, Guo Y Q, Hu C H, Zhang J W. Effects of ecological factors on maize (L.) yield of different varieties and corresponding regulative measure., 2001, 27: 862–868 (in Chinese with English abstract) [21] 张福锁, 米国华, 刘建安. 玉米氮效率遗传改良及其应用. 农业生物技术学报, 1997, 2(5): 112–117 Zhang F S, Mi G H, Liu J A. Advances in the genetic improvement of nitrogen efficiency in maize., 1997, 2(5): 112–117 (in Chinese with English abstract) [22] Osaki M, Morikawa K, Shinano T, Tadano T. Productivity of high-yielding crops: II. Comparison of N, P, K, Ca and Mg accumulation and distribution among high-yielding crops.,1991, 37: 445–454 [23] 马国胜, 薛吉全, 路海东, 张仁和.密度对不同类型饲用玉米光合产物积累与转运的影响. 华北农学报, 2006, 21(3): 46–50 Ma G S, Xue J Q, Lu H D, Zhang R H. Effect of density on accumulation and transformation of photosynthesis product of different type forage corn.2006, 21(3): 46–50 (in Chinese with English Abstract) [24] 李从锋, 赵明, 刘鹏, 张吉旺, 杨今胜, 董树亭. 中国不同年代玉米亲本自交系的灌浆特性与氮素运转. 作物学报, 2014, 40(11): 1990–1998 Li C F, Zhao M, Liu P, Zhang J W, Yang J S, Dong S T. Characteristics of grain filling and nitrogen translocation of maize parent lines released in different eras in China., 2014, 40(11): 1990–1998 (in Chinese with English abstract) [25] 叶东靖, 高强, 何文天, 何萍.施氮对春玉米氮素利用及农田氮素平衡的影响. 植物营养与肥料学报, 2010, 16: 552–558Ye D J, Gao Q, He W T, He P. Effect of N application on N utilization and N balance in spring maize., 2010, 16: 552–558 (in Chinese with English Abstract) [26] 陈范骏, 米国华, 张福锁, 王艳, 刘向生, 春亮. 华北区部分主栽玉米杂交种的氮效率分析. 玉米科学, 2003, 11(2): 78–82Chen F J, Mi G H, Zhang F S, Wang Y, Liu X S, Chun L. Nitrogen use efficiency in some of main maize hybrids grown in north China., 2003, 11(2): 78–82 (in Chinese with English abstract) [27] 王玲敏, 叶优良, 陈范骏, 尚云峰. 施氮对不同品种玉米产量、氮效率的影响. 中国生态农业学报, 2012, 20: 529–535 Wang L M, Ye Y L, Chen F J, Shang Y F. Effect of nitrogen fertilization on maize yield and nitrogen efficiency of different maize varieties., 2012, 20: 529–535 (in Chinese with English abstract) [28] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 张秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16: 274–281 Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Nitrogen and transplanting density interactions on the rice yield and N use rate ., 2010, 16: 274–281 (in Chinese with English Abstract) [29] 春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615–619 Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency., 2005, 11: 615–619 (in Chinese with English abstract) [30] 李淑文, 文宏达, 周彦珍, 李雁鸣, 肖凯. 不同氮效率小麦品种氮素吸收和物质生产特性. 中国农业科学, 2006, 39: 1992–2000 Li S W, Wen H D, Zhou Y Z, Li Y M, Xiao K. Characterization of nitrogen uptake and dry matter production., 2006, 39: 1992–2000 (in Chinese with English abstract) [31] 颜军, 杨德光. 4个玉米品种氮素利用效率的比较研究. 玉米科学, 2010, 18(2): 91–95 Yan J, Yang D G. Comparison on N utilization efficiency of four maize varieties., 2010, 18(2): 91–95 (in Chinese with English abstract) [32] 李敏, 张洪程, 李国业, 魏海燕, 殷春渊, 马群, 杨雄. 水稻氮效率基因型差异及其机理研究进展. 核农学报, 2011, 25: 1057–1063 Li M, Zhang H C, Li G Y, Wei H Y, Yin C Y, Ma Q, Yang X. Genotypic difference of nitrogen use efficiency in rice and its morphological and physiological mechanisms., 2011, 25: 1057–1063 (in Chinese with English abstract) Effects of Nitrogen Application Rates on Dry Matter Productivity and Nitrogen Utilization of Different Type Maize Hybrids ZHOU Pei-Lu1, REN Hong2, QI Hua2, ZHAO Ming1,*, and LI Cong-Feng1,* 1Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China;2Shenyang Agricultural University, Shenyang 110161, China To understand the relationship between dry matter productivity, nitrogen utilization and grain yield of spring maize hybrids in Northeast China, we conducted a field experiment in 2014 and 2015. Using two maize hybrids (Xianyu 335 and Zhangdan 958), under two planting densities (90 000 plants ha–1and 67 500 plants ha–1) and five N application rates [0 kg ha–1(N0); 100 kg ha–1(N1); 200 kg ha–1(N2); 300 kg ha–1(N3); and 400 kg ha–1(N4)]. The average maximum grain yield in two years was higher in Xianyu 335 (XY335), while, the optimum N application rate was 4.8%-10.6% lower than that in Zhengdan 958 (ZD958). Compared with ZD958, total dry matter accumulation, dry matter accumulation after flowering, and dry matter translocation efficiency of XY335 were higher in nitrogen treatments, but lower in treatments without nitrogen application. At the same time, dry matter accumulation and dry matter translocation efficiency were increased gradually with increasing N application in XY335, especially under high density plantation. N concentration in leaf and stem of XY335 was different, showing higher at silking (<0.05) and lower at harvest, which was due to better translocation efficiency in XY335 than in ZD958 after silking. The grain N content had small difference between two cultivars under high plant density, and significantly increased in XY335 under lower plant density (< 0.05). In nitrogen treatments, XY335 had higher N accumulation at pre-silking and post-silking and significantly higher (< 0.05) contribution of leaf N translocation to grain yield was than ZD958. At optimal nitrogen application rate, N use efficiency(NUE) and N recovery efficiency(NRE) were significantly higher (< 0.05) in XY335 under both planting densities, while agronomic nitrogen efficiency (ANUE) and partial factor productivity from applied N (PFPN) were not significantly different between XY335 and ZD958. In XY335, NUE was significantly higher under high planting density due to higher dry matter production and better translocation efficiency during filling stage. Our results suggest that XY335 is a high nitrogen efficient (HNE) spring maize variety in the northeast of China, and can be better used to obtain high yield and high efficiency in intensive farming. Maize Hybrids; Nitrogen; Dry matter productivity; Nitrogen utilization 本研究由国家自然科学基金项目(31401342), 国家重点研发计划项目(2016YFD0300103)和国家现代农业产业技术体系建设专项(NYCYTX-02)资助。 This study was supported by the National Natural Science Foundation of China (31401342), the National Key Research and Developing Program of China (2016YFD0300103), and the China Agriculture Research System (NYCYTX-02). 2016-0307; Accepted(接受日期): 2016-09-18; Published online(网络出版日期):2016-09-29. 10.3724/SP.J.1006.2017.00263 李从锋, E-mail: licongfeng2008@sina.com, Tel: 010-82106042; 赵明, E-mail: zhaomingcau@163.net, Tel: 010-82108752 E-mail: zhpeilu@163.com URL: http://www.cnki.net/kcms/detail/11.1809.S.20160929.1451.004.html2 结果与分析
3 讨论
4 结论