APP下载

基于CAVE的虚拟现实关键技术研究

2017-02-16王庆月

现代电子技术 2017年1期
关键词:虚拟现实

王庆月

摘 要: 虚拟现实技术发展迅速,已广泛应用于诸多领域,传统CAVE系统由于占地面积大、成本高、装调困难,难以推广和普及。因此,便携式CAVE系统的研究与开发对虚拟现实技术的普及与发展具有重要意义。针对此现状,根据便携式CAVE系统的特点,设计了目视光学系统,研究了投影图像的畸变矫正和随机点立体图的生成算法,搭建了基于目视光学系统调节的近距立体显示系统。设计并实施视觉舒适度的主观评估实验,探究近距显示引起的视疲劳程度与视差大小的关系,对基于目视光学系统调节的立体显示系统的视觉舒适度进行评估。该研究为便携式CAVE系统的研究提供了参考依据,对虚拟现实技术的发展和立体视觉舒适度的研究具有一定的实际意义。

关键词: 虚拟现实; 双目视差; 近距显示; 视觉舒适度

中图分类号: TN27?34; TM417 文献标识码: A 文章编号: 1004?373X(2017)01?0140?05

Abstract: The virtual reality technology developed rapidly, and has been widely used in many fields, but the traditional CAVE system is difficult to promote and popularize due to the large floor space, high cost and difficult installation and adjustment, therefore, the research and development of the portable CAVE system has great significance to the popularization and development of the virtual reality technology. According to the features of the portable CAVE system, the visual optical system was designed, the distortion correction of the projected image and random dot stereogram generation algorithm are studied, and the close range stereoscopic display system based on visual optical system adjustment was built. The subjective evaluation experiment of the visual comfort degree was designed and implemented to explore the relationship between the visual fatigue degree and parallax caused by the close range display. The visual comfort degree of the stereoscopic display system based on visual optical system was assessed. This technology provides a reference foundation for the study of the portable CAVE system, and has a certain practical significance to the development of the virtual reality technology and the study of the stereoscopic visual comfort degree.

Keywords: virtual reality; binocular disparity; close range display; visual comfort degree

0 引 言

近年來,虚拟现实技术发展迅速,已经被广泛应用于军事训练、医学实习、娱乐游戏等诸多领域。传统的虚拟现实显示系统虽然技术成熟,但存在一些弊端,因此便携式CAVE系统的概念应运而生。本文搭建了近距立体显示原型系统,通过主观实验,探究了便携式CAVE系统中双目视差的感知深度和单眼聚焦感知深度的差异,以及用户可接受的视觉舒适范围,对基于目视光学系统调节的立体显示系统的视觉舒适度进行评估。

1 立体视觉舒适度的评估方法

1.1 刺激方法的选择

为了避免视差的时间积累效应,实验采用双刺激连续分级法。为控制实验过程中产生的习惯误差,不同视差的立体图按照随机序列交替呈现,且各视差出现的次数相等,整个序列中在前在后的机会相等。

实验的具体刺激方法是:将波纹中心在零视差处的刺激物记为基准图波纹中心在其他位置的刺激物记为待评估图每次施测依次显示三个刺激物,其顺序为或者其目的是强迫用户改变双眼的辐辏角度。每个刺激物显示1.5 s,三个刺激物共显示4.5 s,不同视差的待评估图像随机出现。被试者要独立地进行观测,选出其中一个与其他两个波动方向不同的刺激物,并对该过程的视觉舒适度进行主观评分。同一组图像需随机显示两次以便对评分结果进行一致性检查。

1.2 反应指标的选择

反应指标的选择应依据以下原则:

(1) 无害性。所选取的反应指标不应对被试者产生身体伤害,同时不能对被试者产生负面心理影响,阻碍实验的继续进行。

(2) 无干扰性。所选取的反应指标在测量过程中不能干扰被试者正常观看图像。

(3) 敏感性。所选反应指标应该能够有效地反应出视觉舒适度和视觉疲劳程度。

根据分析,实验主要采用主观评估方法对视觉舒适度进行研究。主观评价方法更适用于对视觉舒适度进行综合评价。舒适度的主观评价方法[1]主要是让被试者在观看立体图像前后根据自身的视觉状况填写问卷,并对问卷的结果进行统计分析。

1.3 主观量表设计方法

主观量是指用户对客观刺激产生的主观度量,又称心理量[2]。在视觉实验中,主观评估方法需对被试者心理量进行测量。主观实验中的心理度量表主要包括:强迫选择度量表、图示度量表和数值度量表。

(1) 强迫选择度量表。强迫选择度量表是在主观评估实验时主试者提供一些对立相反的词语让被试者做出选择。强迫选择度量表可以避免被试者受到他人的影响,但可能会使被试者产生抵触情绪,因为大多数人不愿意让自己处于两难选择的境地。

(2) 图示度量表。图示度量表好比一个温度计,通常用一条直线表示,直线两端具有相反程度的词语。这条直线可以是水平的,也可以是垂直的。实验中被试者需在直线上做标记,实验后主试者用标尺对标记进行度量,将它转换成数字并进行统计。图示度量表的数据统计工作较为复杂和繁琐,本文实验的数据量巨大,因此图示度量表并不适用。

(3) 数值度量表。在数值度量表中,被试者根据事先定义的数字等级进行评定,一般为7级评分或5级评分。在视觉舒适度研究中,可设计度量表如下:非常舒适、舒适、一般、不舒适、非常不舒适。设定等级分值时可以考虑“非常不舒适”为-2分,“不舒适”为-1分,“一般”为0分,“舒适”为1分,“非常舒适”为2分;也可以考虑“非常不舒适”为1分,“不舒适”为2分,“一般”为3分,“舒适”为4分,“非常舒适”为5分。通常情况下不管哪种处理和分析得到的结果是等效的。

本文实验为了使被试者容易理解,考虑一般人的思维模式,将数值度量表等级设计为:“非常舒适”为1分,“舒适”为2分,“一般”为3分,“不舒适”为4分,“极不舒适”为5分。舒适度量表如表1所示。

2 近距立体显示实验系统

2.1 目视光学系统

在便携式CAVE系统中,需要利用目视光学系统调节用户眼睛的调节距离,使人眼不再聚焦于屏幕上。本文实验的目的是研究经过目视光学系统调节后的单眼调节距离和双眼辐辏距离的差异对用户视觉舒适度的影响。实验中需通过改变目视光学系统的屈光度来改变被试者单眼的调节距离。考虑到人眼作为自然界的最高级光学接收系统,具有极强的自我适应和调节能力,因此,本系统选用单片式目镜即可满足基本的成像要求。

2.2 随机点立体图的生成

随机点立体图像对的生成算法如下:

设基面为视差面为

(1) 将基面沿纵方向均分成块,左边第一块区域为原始区,其余各块区域均为重复区域。重复间距为d必须小于瞳距。

(2) 在原始区内画一个随机点

(3) 令得到一新的点如果点在面内,则令如果点不在面内,则令然后在处画出这个新点。

(4) 重复上述步骤(2)、步骤(3),直到图面上布满适当密度的随机点为止。

2.3 投影图像的畸变矫正

本系统应采用侧投影的方式,在这种情况下投影图像会产生畸变,应进行投影图像的畸变矫正。进行投影图像的畸变矫正的模型是将真实投影机的投影图像变换为虚拟投影机的投影图像,从而恢复原始图像[5]。其基本过程是:根据透视变换原理,先计算出投影机图像平面到投影平面的单映矩阵,再将投影机图像平面上的所有像素点乘以这个单映矩阵后进行显示,那么屏幕上获得的图像就是校正后的图像。

3 近距立体显示系统的舒适度评估实验

3.1 实验目的及原理

本实验的主要目的是研究基于目视光学系统调节的近距立体显示系统中单眼感知深度(调节距离)和双眼感知深度(辐辏距离)[5]的差异对用户视觉舒适度的影响。

由式(8)可知,当眼睛到屏幕的距离和瞳距一定时,通过改变立体图像对的水平视差可以改变被试者的双眼感知深度(辐辏距离)。

3.2 被试者筛选及培训

筛选工具:数字化立体视觉检查图(立体视觉检查卡、立体视锐度检查卡)、瞳距测量尺。

本实验被试者的筛选流程如下:

第一步:询问被试者眼部的健康状况、有无色盲、是否做过眼部手术、是否有眼部病史,如结膜炎、眼眶骨折等,筛选出眼睛健康且无病史的被试者。

第二步:进行立体视觉测试,检查被试者的双目立体视觉是否正常,排除立体盲。

第三步:对立体视觉正常的被试者进行立体视锐度测试,筛选出立体视锐度小于60 arcmin的被试者。

第四步:对被试者的年龄、性别、视力、瞳距、有无主观实验经验、是否从事立体视觉相关工作等基本信息进行记录[6]。

為了避免被试者由于不熟悉实验流程和操作过程而影响实验结果的准确性,实验前需对被试者进行相关培训和模拟练习。

首先,采用无偏向性的语气向被试者讲解实验目的、评价类型、评价等级和时间限制等内容,使被试者正确透彻地理解评判标准,并向被试者展示舒适度明显不同的若干立体图像示例。

然后,让被试者进行模拟练习,模拟练习的内容与正式的实验过程类似。被试者连续观看三组立体图像后,用选择器输入差异图像的编号并对该组立体图像引起的视疲劳程度进行评分,练习时间为3 min。

培训完成后,被试者即可进行正式的主观视觉舒适度评价实验。

3.3 实验过程

实验1:探究近距显示引起的视觉疲劳与视差的关系

被试者佩戴屈光度为0的目视光学系统,在距离屏幕0.6 m的位置观察随机出现的立体图像,并进行视觉任务测试和主观舒适度评分。实验1设定刺激物的中心到被试者的距离(辐辏距离)分别为0.79 m,0.94 m,1.15 m,1.50 m,2.14 m,3.75 m,且随机出现。调节距离为0.6 m。

实验1共进行36组小测试。每组测试会连续出现3幅立体图像,被试者双眼融像[7]后,可看到立体图像出现正弦波纹的效果,被试者需选出一个与其他两个正弦波动方向不同的立体图像,利用选择器将它的编号输入到主机系统中。然后对该组小测试产生的视觉疲劳症状进行主观评分。

时间安排及流程:三种位置(1,2,3)×6种辐辏距离(0.79 m,0.94 m,1.15 m,1.50 m,2.14 m,3.75 m)×2种显示序列(B?Xi?B或Xi?B?Xi)=36次施测,每次施测时间为1 min×36次=36 min。

实验2:探究基于目视光学系统调节的立体视觉舒适度

被试者随机佩戴屈光度分别为的目视光学系统,在距离屏幕0.6 m的位置依次进行3个亚组的实验,实验2中设定刺激物的中心到被试者的距离(辐辏距离)分别为0.79 m,0.94 m,1.15 m,1.50 m,2.14 m,且随机出现。人眼的调节距离分别为1.09 m,1.50 m,2.40 m。

实验2中每个亚组各进行30组小测试。每组测试会连续出现3幅立体图像,被试者双眼融像后,可以看到立体图像出现正弦波纹的效果,被试者需选出一个与其他两个正弦波动方向不同的立体图像,利用选择器将它的编号输入主机中,然后对该组小测试产生的视觉疲劳症状进行主观评分。

时间安排及流程:3种透镜度数×3种位置(1,2,3)×5种辐辏距离(0.79 m,0.94 m,1.15 m,1.50 m,2.14 m)×2种显示序列(B?Xi?B或Xi?B?Xi)=90次施测,每次施测调节时间为1 min×90+15 min间隔休息×2=120 min。

3.4 实验结果分析

(1) 近距显示引起的视觉疲劳与视差绝对值[8]呈正相关

将实验1中24个被试者的舒适度主观评分根据不同的辐辏距离进行均值统计。当视差取绝对值时,视差绝对值和视觉舒适度主观评分值经过线性拟合后得到两者的关系模型为:

视差绝对值和视觉舒适度主观评分值的线性相关度为具体见图2。实验结果表明,视觉舒适度的主观评分与视差值呈线性关系,也就是说,对于近距立体显示单眼聚焦和双眼辐辏的不一致性所引起的视觉疲劳与立体视差值成正比关系。单眼聚焦和双眼辐辏的差异越大,产生的视疲劳程度越大,这个结果与大部分研究结果相一致。

(2) 主观舒适度与理论值的符合度基本一致

将实验2中24个被试者的视觉舒适度主观评分根据不同的辐辏距离和调节距离进行均值统计,并将每个亚组的理论舒适度和实验获得的主观舒适度进行比较。

目视光学系统的屈光度为0.75D,1.00D,1.25D的实验结果,如图3~图5所示。

实验结果表明,当调节距离一定时,分别为1.09 m,1.5 m,2.4 m,由辐辏距离的改变引起的视疲劳症状与理论计算得到的结果在总趋势上大体一致。在基于目视光学系统调节的立体显示系统中,辐辏距离越小,符合度越好。在相同视差条件下,经过目视光学系统调节后产生更大的不适感。

(3) 视差舒适度曲线

将实验2中三个亚组的所有情况的视差值与主观舒适度评分进行综合统计,绘制舒适度曲线如图6所示。

实验结果表明,基于目视光学系统调节的立体显示系统中,视差绝对值越小,视觉舒适度越高。在同等视差条件下,非交叉视差的舒适度优于交叉视差。与传统立体显示设备相比,舒适视域向非交叉视差方向偏移。

4 结 论

本文在充分了解双目立体视觉原理、视差型立体显示技术原理、立体显示引起视觉疲劳的根本原因等理论知识的基础上,搭建近距虚拟现实显示系统原型作为实验系统,设计实验研究了基于目视光学系统调节的立体显示系统的视觉舒适度问题。对虚拟现实技术的发展和立体视觉舒适度的研究具有一定的实际意义。

参考文献

[1] 张英静,李素梅,卫津津,等.立体图像质量的主观评价方案[J].光子学报,2012,41(5):602?607.

[2] KIM D, CHOI S, SOHN K. Visual comfort enhancement for stereoscopic video based on binocular fusion characteristics [J]. IEEE transactions on circuits and systems for video technology, 2013, 23(3): 482?487.

[3] 王飞,王晨升,刘晓杰.立体显示技术的原理、体视因素和术语[J].工程图学学报,2010(5):69?73.

[4] 李志永.立体视觉基础[J].现代电影技术,2011(1):52?55.

[5] 顾郁莲,蔡宣平.计算机立体视图绘制技术[J].国防科技参考,1998,19(1):63?70.

[6] 敬万钧.虚拟现实中的视觉系统与其实现技术[J].计算机应用,1997,17(3):5?7.

[7] 李小方,王琼华,李大海,等.柱透镜光栅3D显示器的视差范围与立体观看视疲劳的关系[J].光电子·激光,2012,23(5):873?877.

[8] 汪明霓.视差立体图像的生成算法[J].杭州师范学院学报(自然科学版),2004,3(5):420?422.

猜你喜欢

虚拟现实
虚拟现实技术在中学校园中的应用
论虚拟现实艺术的“沉浸”
REALITY BITES
虚拟现实产业进入高速发展期
风口上的虚拟现实
虚拟现实技术向科幻小说借灵感
虚拟现实:另一个真实世界
诺基亚推出虚拟现实摄像机OZO
虚拟现实炫酷来袭走出实验室坎坷漫长
虚拟现实技术不能根本改变新闻