鱼类免疫应答机制研究进展
2017-02-02白姗姗贾智英石连玉
白姗姗,贾智英,石连玉
(1.中国水产科学研究院黑龙江水产研究所,黑龙江 哈尔滨 150070;2.上海海洋大学水产与生命学院,上海 201306)
鱼类免疫应答机制研究进展
白姗姗1,2,贾智英1,石连玉1
(1.中国水产科学研究院黑龙江水产研究所,黑龙江 哈尔滨 150070;2.上海海洋大学水产与生命学院,上海 201306)
鱼类免疫应答可以分为固有免疫和适应性免疫,但固有免疫发挥主要作用。固有免疫对病原体的识别是通过模式识别受体PRR与病原相关分子模式PAMP的相互结合实现,这与哺乳类相似。但为适应水生生活,鱼类固有免疫对PAMP的识别范围更广,免疫应答的启动条件更低。固有免疫的效应细胞主要是单核/巨噬细胞、嗜中性粒细胞、自然杀伤细胞等,具有吞噬和杀伤功能,还可分泌多种免疫相关的细胞因子,介导发生炎症反应。适应性免疫中,T淋巴细胞通过抗原提呈细胞分解吸收抗原,由主要组织相容性复合物(MHC)类分子递送到细胞表面才能识别。B淋巴细胞分泌产生以免疫球蛋白IgM为主的抗体分子,而发挥抗体中和作用及免疫调理作用的IgG在鱼类中比较少见,说明鱼类抗体的免疫功能还处于较低水平。本文综述了近二十年内鱼类免疫应答机制的相关研究进展,为进一步了解鱼类免疫应答机制提供参考。
鱼类;适应性免疫;固有免疫;免疫应答
我国鱼类养殖历史悠久,市场需求巨大,养殖过程中的病害问题也相当突出。每年由各类真菌、细菌及病毒诱发的疾病,给我国鱼类养殖业造成巨大的经济损失,因此研究鱼类免疫应答尤为重要。增强鱼类免疫应答水平,以提高机体抗病能力是研究鱼类抗病免疫的重中之重。免疫应答是指机体对于异己成分或者变异的自体成分做出的防御反应。而免疫应答的一般过程包括抗原呈递与识别阶段、活化增殖和分化阶段、效应阶段。鱼类免疫学研究证明,与哺乳动物等高等脊椎动物一样,鱼类免疫存在适应性(特异性)免疫和固有(非特异性)免疫。但是,鱼类是变温水生动物,免疫应答过程中固有免疫应答机制起主要作用。
1 固有免疫应答
鱼类固有免疫应答具有种系内稳定遗传、没有特异性、免疫识别广泛的特点,与抗原的初次接触即产生效应,不具有二次免疫功能,协助并参与适应性免疫应答。
1.1 防御屏障的作用
由皮肤、鳞片、粘膜表皮层构成鱼类的基础屏障是鱼类的第一线防御。鱼类表皮黏液中含有溶菌酶和糖蛋白等,能抑制细菌微生物的生长或使其失活。溶菌酶广泛存在于淡、海水鱼类的皮肤黏液、血清、淋巴组织和组织器官中[1],可以分解细菌细胞壁的肽聚糖。鱼类黏液中存在特异性抗体(尤其是IgM)[2],可直接对入侵的病原体发挥免疫作用。
1.2 固有免疫应答的识别机制
免疫应答离不开对抗原的识别。鱼类固有免疫对抗原的识别是通过模式识别分子和模式识别受体(PRR)识别病原体相关分子模式(PAMP)实现的。PRR与病原体表面的PAMP相互识别和作用是启动固有免疫应答的关键。值得注意的是,PAMP很少是蛋白质,蛋白质类病原体主要为淋巴细胞识别,诱发适应性免疫应答[3]。
模式识别受体(PRR)包括吞噬性受体(可溶性受体)和信号受体(膜结合受体)。已证实,鱼类的前者包括C型凝集素受体(CLR)、清道夫受体(SR),后者则包括 Toll样受体(TLR)、NOD样受体(NLR)、RIG样受体(RLR)。CLR主要识别糖类抗原,介导并调节细胞因子的产生、上调单核/巨噬细胞(Mo/MΦ)[4,5],并触发激活Th细胞的抗真菌免疫应答[6]。硬骨鱼类尼罗罗非鱼Oreochromis niloticus的CLR与哺乳类NK细胞受体同源[7]。SR主要有SRA和SRB两种,SRB能与革兰氏菌结合[8]。SRA参与细菌及RNA病毒引发的免疫应答[9,10]。TLR是细胞膜表面识别受体,可以直接特异性结合病原体结构[11],也可以激发NF-κB信号通路,而NF-κB通路是先天免疫系统中细胞信号通路激活的核心[12]。TLR信号转导途径为MyD88依赖途径和非MyD88依赖途径,分别参与炎症反应和抗病毒效应[13,14]。目前在鱼类中发现了十几种TLR,其中TLR2、TLR5、TLR9可以专门识别细菌的PAMPs[15,16]。TLR4参与细菌和病毒引发的免疫应答[17,18]。对鱼类参与介导炎症级联反应的NLR类型知之甚少,日本学者认为LPS可能是NLR介导炎症反应的配体[19]。有学者推测,NLR在细胞调控、细胞凋亡及免疫应答中有重要作用,硬骨鱼类中普遍存在保守的NLR基因序列[20]。RLR属于I型干扰素诱导蛋白[21],鱼类的RLR对胞内、外的各种病毒均有识别功能,诱发IFN信号通路以抵抗病毒感染[22,23]。
模式识别分子(PRM)参与炎症反应中病原体的清除。鱼类PRM主要包括急性时相蛋白C反应蛋白(CRP)、抗菌/通透性蛋白(BPI)和脂多糖结合蛋白(LBP)。CRP在炎症信号及IL-6的激发下由肝脏产生,对入侵的异己成分做出免疫应答[24]。因CRP参与补体的激活,常被作为炎症反应的生物标志物[25]。鱼感染嗜水气单胞菌Aeromonas hydrophila后,血清中CRP含量增加[26,27]。哺乳动物在炎症反应和组织坏死的早期CRP含量也增加,这一现象在尼罗罗非鱼中已被证实[28]。部分硬骨鱼类中,证实了BPI和LBP参与并诱导急性时相蛋白对细菌疾病的免疫应答[29,30]。
1.3 固有免疫的效应细胞
固有免疫的效应细胞主要有单核/巨噬细胞、嗜中性粒细胞、自然杀伤(Natural killer,NK)等,具有吞噬和杀伤功能,也分泌免疫相关的细胞因子,介导炎症反应的发生。
单核/巨噬细胞与中性粒细胞是鱼类中两大类重要的吞噬细胞[31]。单核细胞迁移出血管至各组织中,发育为巨噬细胞。鱼类的单核细胞与哺乳动物相似。硬骨鱼类的细胞因子如IL-4、IL-13及γ-干扰素与巨噬细胞激活与分化有关[32,33]。单核巨噬细胞不仅在固有免疫中发挥吞噬作用,在适应性免疫中作为抗原提呈细胞APCs发挥作用。巨噬细胞可以被多种细胞因子(IL-1、IFN-γ等)活化,直接分泌杀伤物质直接杀死靶细胞,还可以分泌如IFN-γ、IL-1、TNF-α等细胞因子增强自身杀伤能力。鱼类的IFNγ、IL-4、IL-13等细胞因子参与巨噬细胞极化为M1、M2类巨噬细胞的过程,也证明鱼类中同样存在Th1和Th2类免疫反应[32]。
嗜中性粒细胞是鱼类固有免疫的重要细胞,鱼类嗜中性粒细胞与哺乳动物嗜中性粒细胞的功能相似[34,35],具有活跃的吞噬和杀伤功能,但其吞噬能力一般比单核/巨噬细胞弱。中性粒细胞胞外诱捕网(Neutrophil extracellular traps,NETs)由 DNA和抗菌蛋白组成,在固有免疫应答中阻拦并消除病原体,目前已经在鲤Cyprinus carpio中发现,是固有免疫的重要部分[36]。NK细胞因其非特异的细胞毒杀伤作用而得名。哺乳动物的NK细胞一般依靠IL-2和IL-12等细胞因子激活。这些细胞因子能直接影响NK细胞的迁移速率,促进NK细胞的增殖[37]。NK细胞通过释放NK细胞毒因子(NKCF)、TNF-α及干扰素IFN-γ等杀伤介质和靶细胞。鱼类的NK细胞包括非特异性细胞毒性细胞(NCCs)和NK细胞[38]。NCC细胞是源于器官的细胞,NK细胞来源于外周血淋巴细胞(PBL)[39]。NK细胞清除“异己”成分不需要预先激活,可以直接杀死病毒感染的细胞[40]。温度影响自然杀伤细胞的杀伤作用及吞噬细胞等的吞噬作用[41],这可能是某些鱼类疾病发生时具有温度依赖性的原因之一。而鱼类中还存在自然杀伤细胞增强因子(NKEF),可增强鱼类免疫病菌和病毒的免疫应答水平,是巨噬细胞和细胞毒性细胞在固有免疫应答过程中的沟通桥梁[42,43]。
1.4 固有有免疫的效应分子
大多数鱼类的抗菌肽(AMPs)具有直接抗菌功能[44],如溶菌酶(Lysozyme)可使细菌溶解[45]并激活补体系统,促进吞噬细胞的吞噬作用,防御素(Defense)能直接杀伤细菌活性[46,47]。
补体(Complement,C)具有调理、吞噬、炎症介导、补体防御和清除病原体的作用[48]。补体活化途径包括经典途径、凝集素途径和旁路途径[49]。与哺乳类相比,鱼类的补体存在多种亚型,可以识别更多的外源细胞表面[50]。C3是鱼类补体系统的主要成分,可以调理中性粒细胞的吞噬作用[51]。无頜鱼类的C3只能通过替代途径激活,促进细胞吞噬[52]。补体C5介导炎症反应中靶细胞溶解过程[53]。补体C6是免疫反应的重要感受器和效应器,参与消除感染细胞的过程[54]。补体C7在补体激活及效应过程中,作用于靶细胞膜上,发挥杀伤作用[55],属于效应分子。由于补体经典途径的激活需要抗原抗体复合物(APC)的出现,所以补体也参与调节T细胞介导的适应性免疫应答[56]。
细胞因子是一类由免疫细胞和非特异性免疫细胞合成或分泌的小分子多肽物质,仅在机体进入免疫应答阶段大量分泌[57]。鱼类中已鉴别出的细胞因子有白细胞介素(Interleukin,IL)、趋化因子(Chemokine)、干扰素(IFN)、转化生长因子(TGF-β)。
目前已经报道的鱼类白细胞介素中IL-1β、IL-6、TNF-α具有促炎作用,IL-10具有抗炎作用,IL-21参与T细胞增殖/分化,IL-12刺激NK细胞激活[58,59]。由此可见,白细介素在鱼类固有免疫和适应性免疫中均有不可替代的作用。IL-2和IL-6优先驱动巨噬细胞分化[60]。值得注意的是,IL-2可以诱导激活T细胞、B细胞和NK细胞分泌IFN-γ[61],促进Th细胞分化并分泌IFN-γ介导细胞免疫[62]。在金头鲷Sparus aurata发现的白细胞介素IL-6对TNF-α的活化作用由NF-κB、p38 MAPK和JNK信号转导通路介导[63]。TNF可以诱发香鱼Plecoglossus altivelis肾脏呼吸爆发,这与哺乳类相似[64]。与细菌相比,病毒可以更高更快地诱导TNF-α的产生[65]。
趋化因子(Chemokine)家族有四个亚族:C-X-C亚族、C-C亚族、C-X3-C亚族和C亚族。前3个亚族在鱼类中均已发现[66],鱼类的趋化因子家族与哺乳类具有同源性,但是功能有所差别[67,68]。趋化因子可使趋化白细胞参与炎症反应[69]。C-C趋化因子是趋化因子的最大亚家族,是先天免疫系统的重要组成部分,具有招募白细胞和增强固有免疫应答的功能[70]。在虹鳟Oncorhynchus mykiss中发现Fractalkine类似物,属于C-X3-C趋化因子,对单核细胞和T淋巴细胞有趋化作用[71]。鲤C-X-C亚族对中性粒细胞、吞噬细胞有趋化作用[72]。鱼类趋化因子C亚族的报道较少。
干扰素是一种能够诱导多种细胞因子的多基因家族。根据结构和功能,IFN可分为三类:Ⅰ型、Ⅱ型和Ⅲ型。Ⅰ型和Ⅲ型干扰素的表达都与干扰素调节因子(IRF)以及核因子(NF-κB)有关[73]。I型干扰素斑马鱼Brachydanio rerio幼鱼感染神经坏死病毒(NNV)的免疫至关重要[74]。转化生长因子(TGF-β)家族在鲑鳟中已经成功分离,推测其可能与鱼类病毒免疫相关[75]。
2 适应性免疫应答
2.1 淋巴细胞抗原识别、提呈及激活
T淋巴细胞通过抗原提呈细胞(APC)分解抗原,由MHC类分子递送到细胞表面才能识别。抗原提呈细胞主要有树突状细胞、B淋巴细胞和巨噬细胞,抗原提呈分子主要有MHC I类分子、MHC II类分子及T细胞表面受体(TCR)。其他抗原提呈辅助分子如 CD3、CD4、CD8等都与 T 细胞表面受体(TCR)的识别有关[76]。哺乳动物的T淋巴细胞表面分子标记CD4和CD8将T细胞分为辅助性T细胞和细胞毒性T细胞两种主要亚群,鱼类也有这两种分子标记。CD4/CD8淋巴细胞同时出现在胸腺中,说明硬骨鱼类的胸腺是T淋巴细胞发育的器官[77,78]。CD8和CD4分子分别通过与自身MHCⅠ类分子和Ⅱ类分子的恒定区结合,加强T细胞与APC或靶细胞的相互作用以及TCR-CD3信号的转导。CD8+细胞毒性T淋巴细胞提呈MHC I类分子,识别内源性抗原。CD4+Th细胞提呈MHCII类分子,识别外源性抗原[79]。CD4+T细胞可以诱导产生二次免疫抗体[80]。参与T细胞活化的主要蛋白激酶和蛋白磷酸酶,通常前者在信号转导的上游发挥作用,后者在下游发挥作用,并直接作用于转录因子[3]。IL-2、核转录因子NF-κB的活化和表达在T细胞的活化中发挥重要作用[81]。T细胞介导MHC递呈的抗原信号后需要CD28或APC表面的配体分子结合才能被真正激活。目前仅在少数硬骨鱼类中报道过CD28分子,对其具体生物学功能还知之甚少[82]。
B细胞对抗原的识别通过B细胞抗原受体BCR实现,可以识别多种抗原,不存在MHC类分子的限制条件。BCR是一种膜型免疫球蛋白mIg。辅助作用的受体有CD19、CD21、CD81等,在鱼类中研究较少。鲤科鱼类中IL-4、IL-13可以促进B淋巴细胞增殖和IgM的分泌[83]。IL-10与B淋巴细胞的活化有关,B淋巴细胞活化因子BAFF可以刺激IL-10和NF-κB的转录和表达[84]。在哺乳类中参与B淋巴细胞活化及增殖的细胞因子大部分是由Th细胞分泌,这一观点还未在鱼类中广泛证实。
2.2 适应性免疫应答的效应机制
2.2.1 抗体的效应功能
B淋巴细胞激活分化为浆细胞后,分泌产生以免疫球蛋白IgM为主的抗体分子。抗体结合抗原,激活补体经典途径,形成攻膜复合物使靶细胞迅速裂解,现已证实鱼类的IgM和补体C在免疫过程存在共同变化的特点[85]。免疫球蛋白主要存在于血浆中,也见于其他体液、组织和一些分泌液中。鱼类有多种免疫球蛋白,如IgD、IgZ、IgT、IgR等。在哺乳类中发挥抗体中和作用及免疫调理作用的IgG在鱼类中比较少见。免疫球蛋白M(IgM)主要由脾脏和淋巴结中浆细胞分泌合成,相对分子质量最大,几乎存在于所有脊椎动物中[86]。胸腺是鱼类重要的免疫器官,IgM的表达量较低。这可能是鱼类的胸腺随着生长而退化的结果[87]。外壳蛋白VP7与草鱼Ctenopharyngodon idellus血清IgM特异性结合可免疫草鱼呼肠孤病毒感染[88]。IgM广泛分布于鱼类的免疫器官如头肾、脾脏中,而IgD、IgZ的分布范围明显较小[89]。IgZ、IgT、IgR主要在体表和肠道等黏膜系统发挥免疫作用[90]。虹鳟中存在一种专门B淋巴细胞分泌IgT,而IgM阳性B淋巴细胞却不能分泌IgT[91],这可能是因为B淋巴细胞在粘膜组织和非粘膜组织中发挥的免疫应答功能不同[92]。
2.2.2 T细胞介导的效应机制
在哺乳动物中,细胞毒性T细胞CTLs杀伤靶细胞的作用必须有Th细胞分泌的IL-2细胞因子的参与才能完成。CTLs首先通过MHC I类分子与靶细胞结合并释放穿孔素杀伤靶细胞,该过程依赖Mg2+、Ca2+离子存在[93]。细胞毒性T细胞分泌TNF-α可以与靶细胞表面相应受体结合发挥细胞毒作用并杀死靶细胞[94]。鱼类的细胞毒性T细胞参与病毒诱发免疫应答的功能和哺乳类相似,对CD8、TCR、MHC I类子等与CTLs免疫相关分子的mRNA表达谱的研究,证实了CTLs的抗病毒免疫功能[95]。
3 小结
虽然鱼类是水生低等脊椎动物,但同样具备固有免疫和适应性免疫。与哺乳类相比,鱼类适应性免疫的进化程度较低,主要是因为免疫球蛋白的类型较少,再次免疫的记忆程度较低。多数鱼类的抗体类型单一,有可能开发出其他潜在的免疫应答策略。鱼类某些固有免疫可能优于哺乳类,如多种形式的溶菌酶、补体亚型、C反应蛋白及急性时相蛋白等,大大增加了固有免疫对抗原的识别能力,提高了免疫应答水平。但是鱼类的免疫应答水平受外界环境影响巨大,尤其是温度的变化,直接影响T细胞和补体等免疫成分的生物活性。鱼类种类和品种多样,免疫应答的种间差异很大,免疫应答作用机理也不能一概而论。随着现代生物技术,尤其是基因分析、蛋白表达等技术的迅速发展,鱼类免疫研究应从基因、蛋白、细胞水平进一步细致、深化鱼类免疫应答机制的研究,尽早形成一套完善的鱼类免疫应答机制理论。
[1]Shailesh S and Sahoo P K.Lysozyme:an important defence moleculeoffish innateimmune system[J].Aquaculture Research,2008,39(3):223-239.
[2] Vervarcke S,Ollevier F,Kinget R,et al.Mucosal response in African catfish after administration of Vibrio anguillarum O2 antigens via different routes[J].Fish&Shellfish Immunology,2005,18(2):125-133.
[3]周光炎.免疫学原理[M].上海:上海科学技术出版社.2007:117-261.
[4]Yang G J,Lu X J,Chen Q,et al.Molecular characterization and functional analysis of a novel C-type lectin receptor-like gene from a teleost fish,Plecoglossus altivelis[J].Fish&Shellfish Immunology,2015,44(2):603-610.
[5] Ma H L,Shi Y H,Zhang X H,et al.A transmembrane C-type lectin receptor mediates LECT2 effects on head kidney-derived monocytes/macrophages in a teleost,Plecoglossus altivelis[J].Fish&Shellfish Immunology,2016,51(4):70-76.
[6]吴婷,孙禾,施毅.C型凝集素受体与Th17细胞免疫在真菌感染中的研究进展[J].中国感染与化疗杂志,2014,1(3):257-261.
[7]Kikuno R,Sato A,Mayer W E,et al.Clustering of C-type lectin natural killer receptor-like loci in the bony fish Oreochromis niloticus[J].Scandinavian Journal of Immunology,2004,59(2):133-142.
[8]Liu K,Xu Y,Wang Y,et al.Developmental expression and immune role of the class B scavenger receptor cd36 in zebrafish[J].Developmental&Comparative Immunology,2016,60(7):91-95.
[9] He J,Liu H and Wu C.Identification of SCARA3,SCARA5 and MARCO of class A scavenger receptor-like family in Pseudosciaena crocea[J].Fish&Shellfish Immunology,2014,41(2):238-249.
[10]Poynter SJ,WeleffJ,Soares AB,et al.Class-Ascavenger receptor function and expression in the rainbow trout(Oncorhynchus mykiss) epithelial cell lines RTgutGC and RTgill-W1[J].Fish&Shellfish Immunology,2015,44(1):138-146.
[11]Altmann S,Korytá rˇT,Kaczmarzyk D,et al.Toll-like receptors in maraena whitefish:evolutionary relationship among salmonid fishes and patterns of response to Aeromonas salmonicida[J].Fish&Shellfish Immunology,2016,54(7):391-401.
[12]Hatada E N,Krappmann D and Scheidereit C.NF-κ B and the innate immune response[J].Current Opinion in Immunology,2000,12(1):52-58.
[13]Rauta P R,Samanta M,Dash H R,et al.Toll-like receptors (TLRs)in aquatic animals:signaling pathways,expressions and immune responses[J].Immunol Lett,2014,158(1):14-24.
[14]Kanwal Z,Wiegertjes G F,Veneman WJ,et al.Comparative studies of Toll-like receptor signalling using zebrafish[J].Developmental&Comparative Immunology,2014,46(1):35-52.
[15]ZhaoB,LiangZ,LiaoH,et al.Mapping Toll-like receptor signalingpathwaygenes ofzhikong scallop(Chlamys farreri)with fish[J].Journal of Ocean University of China,2015,14(6):1075-1081.
[16] Ribeiro C M S,Hermsen T,Taverne-Thiele A J,et al.Evolution of recognition of ligands from Gram-positive bacteria:similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish[J].JournalofImmunology,2010,184(5):2355-2368.
[17]Su J,YangC,XiongF,et al.Toll-like receptor 4 signaling pathway can be triggered by grass carp reovirus and Aeromonas hydrophila infection in rare minnow Gobiocypris rarus[J].Fish&Shellfish Immunology,2009,27(1):33-39.
[18]Huang R,Feng D,Jang S,et al.Isolation and analysis of a novel grass carp toll-like receptor 4 (tlr4)gene cluster involved in the response to grass carp reovirus[J].Developmental&Comparative Immunology,2012,38(2):383-388.
[19] Biswas G,Bilen S,Kono T,et al.Inflammatory immune response by lipopolysaccharide-responsive nucleotide binding oligomerization domain(NOD)-like receptors in the Japanese pufferfish (Takifugu rubripes)[J].Developmental&Comparative Immunology,2016,55(2):21-31.
[20]Kerry J Laing,Maureen K Purcell,James R Winton,et al.A genomic viewofthe NOD-like receptor family in teleostfish:identification of a novel NLR subfamily in zebrafish[J].BMCEvolutionaryBiology,2008,8(1):1-15.
[21] Han J,Xu G and Xu T.The miiuy croaker microRNA transcriptome and microRNA regulation ofRIG-I like receptor signaling pathway after poly(I:C)stimulation[J].Fish&Shellfish Immunology,2016,54(7):419-426.
[22]Wang B,Zhang Y B,Liu T K,et al.Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway[J].Developmental&Comparative Immunology,2014,47(1):140-149.
[23]Zhang J,Zhang Y B,Wu M,et al.Fish MAVS is involved in RLR pathway-mediated IFNresponse[J].Fish&Shellfish Immunology,2014,41(2):222-30.
[24]Huong Giang D T,Van D E,Vandenberghe I,et al.Isolation and characterization of SAP and CRP,two pentraxins from Pangasianodon(Pangasius)hypophthalmus[J].Fish&Shellfish Immunology,2010,28(5-6):743-753.
[25]Vashist S K,Venkatesh A G,Marion S E,et al.Bioanalytical advances in assays for C-reactive protein[J].BiotechnologyAdvances,2015,34(3):272-290.
[26] Maccarthy E M,Burns I,Irnazarow I,et al.Serum CRP-like protein profile in common carp Cyprinus carpio challenged with Aeromonas hydrophila and Escherichia coli lipopolysaccharide[J].Developmental&Comparative Immunology,2008,32(11):1281-1289.
[27]Falco A,Cartwright J R,Wiegertjes G F,et al.Molecular characterization and expression analysis oftwo newC-reactive protein genes fromcommon carp(Cyprinus carpio)[J].Developmental&Comparative Immunology,2012,37(1):127-138.
[28]Ramos F and Smith A C.The C-reactive protein(CRP)test for the detection of early disease in fishes[J].Aquaculture,1978,14(3):261-266.
[29]Tang L,Liang Y,Jiang Y,et al.Identification and expression analysis on bactericidal permeability-increasing protein/lipopolysaccharide-binding protein of blunt snout bream,Megalobrama amblycephala[J].Fish&Shellfish Immunology,2015,45(2):630-640.
[30]Kim J W,Gerwick L and Park C I.Molecular identification and expression analysis of two distinct BPI/LBPs(bactericidal permeability-increasing protein/LPS-binding protein)from rock bream,Oplegnathus fasciatus[J].Fish&Shellfish Immunology,2012,33(1):75-84.
[31] Mulero I,Pilar S M,Roca F J,et al.Characterization of macrophages from the bony fish gilthead seabream using an antibody against the macrophage colony-stimulating factor receptor[J].Developmental&Comparative Immunology,2008,32(10):1151-1159.
[32]Wiegertjes G F,Wentzel A S,Spaink H P,et al.Polarization ofimmune responses in fish:The‘macrophages first’point of view[J].Molecular Immunology,2015,69(3):146-156.
[33]MonteroJ,Gómez-Abellán V,Arizcun M,et al.Prostaglandin E2 promotes M2 polarization of macrophages via a cAMP/CREB signaling pathway and deactivates granulocytes in teleost fish[J].Fish&Shellfish Immunology,2016,55(8):632-641.
[34]Sepulcre M P,López-Muñoz A,Angosto D,et al.TLR agonists extend the functional lifespan of professional phagocytic granulocytes in the bony fish gilthead seabream and direct precursor differentiation towards the production of granulocytes[J].Molecular Immunology,2011,48(6-7):846-859.
[35] Gómez-Abellán V,Montero J,López-Muñoz A,et al.Professional phagocytic granulocyte-derived PGD2 regulates the resolution of inflammation in fish[J].Developmental&Comparative Immunology,2015,52(2):182-191.
[36] Pijanowski L,Golbach L,Kolaczkowska E,et al.Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways[J].Fish&Shellfish Immunology,2013,34(5):1244-1252.
[37]Hodge D L,Schill W B,Wang J M,et al.IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression[J].Journal ofImmunology,2002,168(12):6090-6098.
[38]Fischer U,Koppang E O and Nakanishi T.Teleost T and NK cell immunity [J].Fish&Shellfish Immunology,2013,35(2):197-206.
[39]Kurata O,Okamoto N and Ikeda Y.Neutrophilic granulocytes in carp,Cyprinus carpio,possess a spontaneous cytotoxic activity[J].Developmental&Comparative Immunology,1995,19(4):315-325.
[40]Yoshida S H,Stuge T B,Miller N W,et al.Phylogeny of lymphocyte heterogeneity:cytotoxic activity of channel catfish peripheral blood leukocytes directed against allogeneictargets[J].Developmental&ComparativeImmunology,1995,19(1):71-77.
[41]Kurata O,Okamoto N,Suzumura E,et al.Accommodation ofcarp natural killer-like cells to environmental tempera-tures[J].Aquaculture,1995,129(1-4):421-424.
[42] Low C F,Shamsudin M N,Chee H Y,et al.Putative apolipoprotein A-I,natural killer cell enhancement factor and lysozyme gare involved in the earlyimmune response of brown-marbled grouper,Epinephelus fuscoguttatus,Forskal,to Vibrio alginolyticus[J].Journal of Fish Diseases,2014,37(8):693-701.
[43]Bethke J,Rojas V,Berendsen J,et al.Development of a new antibody for detecting natural killer enhancing factor(NKEF)-like protein in infected salmonids[J].Journal of Fish Diseases,2012,35(5):379-388.
[44]王荻,李绍戊,卢彤岩,等.鱼类抗菌肽的功能及应用前景[J].水产学杂志,2012,25(4):65-68.
[45]Wang R,Feng J,Li C,et al.Four lysozymes(one c-type and three g-type)in catfish are drastically but differentiallyinduced after bacterial infection[J].Fish&Shellfish Immunology,2013,35(1):136-145.
[46] Dong JJ,Wu F,Ye X,et al.Β-defensin in Nile tilapia(Oreochromis niloticus):Sequence,tissue expression,and anti-bacterial activityofsynthetic peptides[J].Gene,2015,566(1):23-31.
[47]Chen Y,Zhao H,Zhang X,et al.Identification,expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection[J].Fish&Shellfish Immunology,2013,35(2):399-406.
[48] Pionnier N,Falco A,Miest J,et al.Dietary β-glucan stimulate complement and C-reactive protein acute phase responses in common carp (Cyprinus carpio)during an Aeromonas salmonicida infection[J].Fish&Shellfish Immunology,2013,34(3):819-831.
[49]Kaastrup P and Koch C.Complement in the carp fish[J].Developmental&Comparative Immunology,1983,7(4):781-782.
[50]王卫卫,吴谡琦,孙修勤,等.硬骨鱼免疫系统的组成与免疫应答机制研究进展[J].海洋科学进展,2010,28(2):257-265.
[51]Matsuyama H,Yano T,Yamakawa T,et al.Opsonic effect of the third complement component(C3)of carp(Cyprinus carpio) on phagocytosis by neutrophils[J].Fish&Shellfish Immunology,1992,2(1):69-78.
[52]肖克宇.水产动物免疫与应用[M].北京:科学出版社,2007:139-191.
[53]Kato Y,Nakao M,Mutsuro J,et al.The complement component C5 of the common carp(Cyprinus carpio):cDNA cloning of two distinct isotypes that differ in a functional site[J].Immunogenetics,2003,54(11):807-815.
[54]Shen Y,Zhang J,Xu X,et al.A newhaplotype variability in complement C6 is marginally associated with resistance to Aeromonas hydrophila in grass carp[J].Fish&Shellfish Immunology,2013,34(5):1360-1365.
[55]Shen Y,Zhang J,Xu X,et al.Expression of complement component C7 and involvement in innate immune responses to bacteria in grass carp[J].Fish&Shellfish Immunology,2012,33(2):448-454.
[56]Nur I,Abdelkhalek N K,Motobe S,et al.Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp[J].Molecular Immunology,2016,2(70):1-7.
[57] Secombes C J,Hardie L J and Daniels G.Cytokines in fish:an update[J].Fish&Shellfish Immunology,1996,6(4):291-304.
[58]KonoT,Takayama H,Nagamine R,et al.Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines[J].Veterinary Immunology&Immunopathology,2013,151(1-2):90-101.
[59] Pijanowski L,Kemenade V V,Irnazarow I,et al.Stress-induced adaptation of neutrophilic granulocyte activity in K and R3 carp lines[J].Fish&Shellfish Immunology,2015,47(2):886-892.
[60] Corripiomiyar Y,Secombes C J and Zou J.Long-term stimulation of trout head kidney cells with the cytokines MCSF,IL-2 and IL-6:gene expression dynamics[J].Fish&Shellfish Immunology,2012,32(1):35-44.
[61]Wang T,Husain M,Hong S,et al.Differential expression,modulation and bioactivity of distinct fish IL-12 isoforms:implication towards the evolution of Th1-like immune responses[J].European Journal of Immunology,2014,44(5):1541-1551.
[62]Jaso-Friedmann L,Warren J,McgrawR A,et al.Molecular characterization of a protozoan parasite target antigen recognized by nonspecific cytotoxic cells[J].Cellular Immunology,1997,176(2):93-102.
[63]Castellana B,Marín-Juez R and Planas J V.Transcriptional regulation ofthe gilthead seabream(Sparus aurata)interleukin-6 gene promoter[J].Fish&Shellfish Immunology,2013,35(1):71-78.
[64] Uenobe M,Kohchi C,Yoshioka N,et al.Cloning and characterization of a TNF-like protein of Plecoglossus altivelis(ayu fish)[J].Molecular Immunology,2007,44(6):1115-1122.
[65]Ordás MC,Costa MM,Roca F J,et al.Turbot TNF alpha gene:molecular characterization and biological activity of the recombinant protein[J].Molecular Immunology,2007,44(4):389-400.
[66]Nomiyama H,Hieshima K,Osada N,et al.Extensive expansion and diversification of the chemokine gene family in zebrafish:identification of a novel chemokine subfamily CX[J].BMCGenomics,2008,9(1):1-19.
[67]Aa L MV D,Chadzinska M,Derks W,et al.Diversification of IFNγ-inducible CXCb chemokines in cyprinid fish[J].Developmental&Comparative Immunology,2012,38(2):243-253.
[68]Liu Lei1,Fujiki Kazuhiro,Dixon Brian,et al.Cloning of a novelrainbowtrout(Oncorhynchus mykiss)CCchemokine with a fractalkine-like stalk and a TNF decoy receptor using cDNA fragments containing AU-rich elements[J].Cytokine,2002,17(2):71-81.
[69]Baoprasertkul P,He C,Peatman E,et al.Constitutive expression of three novel catfish CXC chemokines:homeostatic chemokines in teleost fish[J].Molecular Immunology,2005,42(11):1355-1366.
[70] Hu Y H and Zhang J.CsCCL17,a CC chemokine of Cynoglossus semilaevis,induces leukocyte trafficking and promotes immune defense against viral infection[J].Fish&Shellfish Immunology,2015,45(2):771-779.
[71]Liu L,Fujiki K,Dixon B,et al.Cloning of a novel rainbow trout (Oncorhynchus mykiss) CC chemokine with a fractalkine-like stalk and a TNF decoyreceptor usingcDNA fragments containing AU-rich elements[J].Cytokine,2002,17(2):71-81.
[72]Lm V D A,Chadzinska M,Golbach L A,et al.Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines[J].Developmental&Comparative Immunology,2012,36(4):741-750.
[73]Iversen MB and Paludan S R.Mechanisms of type III interferon expression[J].Journal of Interferon&Cytokine Research the Official Journal of the International Society for Interferon&Cytokine Research,2010,30(8):573-578.
[74]Chen H Y,Liu W,Wu S Y,et al.RIG-I specifically mediates group II type I IFN activation in nervous necrosis virus infected zebrafish cells[J].Fish&Shellfish Immunology,2015,43(2):427-435.
[75]Maehr T,Costa M M,Vecino J L G,et al.Transforming growth factor-β1b:a second TGF-β1 paralogue in the rainbow trout(Oncorhynchus mykiss)that has a lower constitutive expression but is more responsive to immune stimulation[J].Fish&Shellfish Immunology,2013,34(2):420-432.
[76]Andersen M H,Schrama D,Thor S P,et al.Cytotoxic T cells[J].Journal of Investigative Dermatology,2006,126(1):32-41.
[77]Himaki T,Mizobe Y,Tsuda K,et al.Conservation ofcharacteristics and functions of CD4positive lymphocytes in a teleost fish[J].Developmental&Comparative Immunology,2011,35(6):650-660.
[78] Araki K,Akatsu K,Suetake H,et al.Characterization of CD8+leukocytes in fugu (Takifugu rubripes)with antiserumagainst fugu CD8alpha[J].Developmental&Comparative Immunology,2008,32(7):850-858.
[79] König R and Zhou W.Signal transduction in T helper cells:CD4coreceptors exert complex regulatory effects on T cell activation and function[J].Current Issues in Molecular Biology,2004,6(1):1-15.
[80]SomamotoT,KondoM,Nakanishi T,et al.Helper function ofCD4+lymphocytes in antiviral immunity in ginbuna crucian carp,Carassius auratus langsdorfii[J].Developmental&Comparative Immunology,2013,44(1):111-115.
[81] Wang Y,Wei H,Wang X,et al.Cellular activation,expression analysis and functional characterization of grass carp IκBα:evidence for its involvement in fish NF-κB signalingpathway[J].Fish&Shellfish Immunology,2015,42(2):408-412.
[82]Hu Y H,Sun B G,Deng T,et al.Molecular characterization of Cynoglossus semilaevis CD28[J].Fish&Shellfish Immunology,2012,32(5):934-938.
[83] Yamaguchi T,Miyata S,Katakura F,et al.Recombinant carp IL-4/13B stimulates in vitro proliferation ofcarp IgM(+)B cells[J].Fish&Shellfish Immunology,2016,49(2):225-229.
[84]Godahewa G I,Perera N C,Umasuthan N,et al.Molecular characterization and expression analysis of B cell activating factor from rock bream (Oplegnathus fasciatus)[J].Developmental and Comparative Immunology,2015,55(5):1-11.
[85]Li X,Liu L,ZhangY,et al.Toxic effects ofchlorpyrifos on lysozyme activities,the contents of complement C3 and IgM,and IgMand complement C3 expressions in common carp (Cyprinus carpio L.)[J].Chemosphere,2013,93(2):428-433.
[86] Amemiya C T,Alf?ldi J,Lee A P,et al.The African coelacanth genome provides insights into tetrapod evolution[J].Nature,2013,496(7445):311-316.
[87]Grøntvedt R N and Espelid S.Immunoglobulin producing cells in the spotted wolffish(Anarhichas minor Olafsen):localization in adults and during juvenile development[J].Developmental&Comparative Immunology,2003,27(6-7):569-578.
[88] Chen C,Sun X,Liao L,et al.Antigenic analysis of grass carp reovirus using single-chain variable fragment antibody against IgMfrom Ctenopharyngodon idella[J].Science China Life Sciences,2013,56(1):59-65.
[89]Tian J,Sun B,Luo Y,et al.Distribution of IgM,IgD and IgZ in mandarin fish,Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation[J].Aquaculture,2009,288(1):14-21.
[90]Rombout J H,Yang G and Kiron V.Adaptive immune responses at mucosal surfaces of teleost fish[J].Fish&Shellfish Immunology,2014,40(2):634-643.
[91] Zhang Y A,Salinas I,Li J,et al.IgT,a primitive immunoglobulin class specialized in mucosal immunity[J].Nature Immunology,2010,11(9):827-835.
[92]Salinas I,ZhangY A,Sunyer J O.Mucosal immunoglobulins and B cells ofteleost fish[J].Developmental&Comparative Immunology,2011,35(12):1346-1365.
[93] Toda H,Araki K,Moritomo T,et al.Perforin-dependent cytotoxic mechanism in killing by CD8positive T cells in ginbuna crucian carp,Carassius auratus langsdorfii[J].Developmental&Comparative Immunology,2011,35(1):88-93.
[94]Ronza P,Bermúdez R,Losada A P,et al.Immunohistochemical detection and gene expression of TNFα in turbot(Scophthalmus maximus)enteromyxosis[J].Fish&Shellfish Immunology,2015,47(1):368-376.
[95]SomamotoT,KoppangE O and Fischer U.Antiviral functions ofCD8(+)cytotoxic Tcells in teleost fish[J].Developmental&Comparative Immunology,2014,43(2):197-204.
Research Progress of Immune Response Mechanisms in Fish
BAI Shan-shan1,2,JIA Zhi-ying1,SHI Lian-yu1
(1.Heilongjiang River Fisheries Research Institute,Chinese Academy of Fishery Sciences,Harbin 150070,China;2.College of Fisheries and Life Sciences,Shanghai Ocean University,Shanghai 201306,China)
Like mammals,fish immune response can be divided into innate immunity,which is primarily realized by identifying pathogens through the interactive combination of pattern recognition receptor(PRR)and pathogen-associated molecular pattern(PAMP),and adaptive immunity.In order to adapt to aquatic life,however,fish innate immunity has a broader recognition scope on PAMP to launch immune response under low conditions.Effect cells of innate immunity are mainly comprised of mononuclear/macrophage,neutrophilic granulocyte and natural killer cells and others showing functions of phagocytosis and killing and secreting multiple immune-associated cytokines and mediate in inflammatory response.In the adaptive immunity,T lymphocytes absorb antigens through decomposition of antigen presenting cells and identifiation by transmitting to the surface by main histocompatibility complex(MHC)molecules,indicating the lower immunity under the limitation of MHC molecules,compared to the mammals.In the mammals,B lymphocytes generate antibody modules by the primary immune globulin IgM while the fish antibody modules are derived from the rare IgG,indicating that comparing with mammals,immunologic functions of fish antibody are still kept in the low level.The relevant articles of fish immune response mechanism published in the past 20 years are summarized,aiming to further know about the research progress of fish immune response mechanism.
fish;adaptive immunity;innate immunity;immune response
S917
A
1005-3832(2017)04-0059-09
2016-11-09
黑龙江所基本业务费(HSY201401);国家“十二五”科技支撑计划项目(2012BAD26B01);国家大宗淡水鱼类产业技术体系北方鲤鱼种质资源与育种项目(CARS-46-02).
白姗姗(1993-),女,硕士研究生,研究方向:水产遗传育种.E-mail:bss140101017@163.com
石连玉(1960-),男,研究员,从事鱼类遗传育种研究.E-mail:sly2552@yahoo.com.cn