求解应力强度因子的样条虚边界元交替法
2017-01-18陈淼许秩范学明刘德铭卢健东黄诗
陈淼 许秩 范学明 刘德铭 卢健东 黄诗惠
摘要:
为求解平面裂纹问题的应力强度因子,提出基于Muskhelishvili基本解和样条虚边界元法的样条虚边界元交替法.该方法将平面内带裂纹有限域问题分解成带裂纹无限域问题与不带裂纹有限域问题的叠加.带裂纹无限域问题利用Muskhelishvili基本解法直接得出,不带裂纹有限域问题采用样条虚边界元法求解.利用该方法对复合型中心裂纹方板和I型偏心裂纹矩形板进行分析.数值结果表明该方法精度高且适用性强.
关键词:
平面裂纹; 样条虚边界元法; 交替法; 断裂力学; Muskhelishvili基本解; 应力强度因子
中图分类号: O302
文献标志码: A
Abstract:
To solve the stress intensity factor of plane crack problem, a spline fictitious boundary element alternating method is proposed based on Muskhelishvili fundamental solution and spline fictitious boundary element method. A finite field crack problem is transformed into the superposition of a simple finite field problem without crack and an infinite problem with crack. The Muskhelishvili fundamental solution method is used to solve the infinite problem with crack and the spline fictitious boundary element method is implemented to solve the simple finite field problem without crack. A square plate with a slant center crack and a Itype rectangular plate with an eccentric crack are solved using the method. The numerical results show that the method is of high accuracy and strong applicability.
Key words:
plane crack; spline fictitious boundary element method; alternating method; fracture mechanics; Muskhelishvili fundamental solution; stress intensity factor
0引言
任何材料和工程结构都会不同程度地存在裂纹缺陷,其产生和扩展对构件的承载能力会造成很大程度的破坏,因此断裂力学在现代强度理论中的地位越来越重要.应力强度因子是表征裂纹特性的重要参量,所以对其计算是断裂力学研究的重要环节.
在现阶段,求解应力强度因子的方法主要为改进的有限元法,包括奇异有限元法和扩展有限元法.[12]奇异有限元法通过移动节点使奇异点出现在1/4处而不是中点处,使得边界节点处出现奇异的应力场,但是该方法存在单元直接协调性和计算收敛性的问题.扩展有限元法改进单元的形函数,使之包含不连续性的基本成分,从而放松对网格密度的划分要求,但是其刚度矩阵存在病态问题并增加许多额外的未知量.
为更加高效精确地分析裂纹问题,有学者提出求解裂纹问题应力强度因子的SchwartzNeumann交替法.该方法将带裂纹的复杂结构分解成为一个不含裂纹的复杂结构与一个含裂纹的无限大域,运用迭代方法或者线性方程对分解后的结构进行求解.含裂纹无限域采用Muskhelishvili基本解[3]求解,能够直接利用表达式求解出平面内任意一点的响应和裂纹尖端的应力强度因子,因此具有精度高和计算量小的优点.不含裂纹的复杂结构可以采用数值方法求解,有限元法是最为常见的数值方法[410],将交替法与有限元法相结合的方法称为有限元交替法.然而,有限元法的应力结果相较于位移结果来说精度较低,在循环迭代的过程中会造成误差的进一步增大.
样条虚边界元法是一种高效的间接边界元法,其只需要对边界进行划分,可降低问题求解的维度,使得计算效率大大提高,目前已经在工程实践中应用.[1114]Muskhelishvili基本解和样条虚边界元法都是基于无限域推导出来的,所以在全平面内都可以运用叠加原理.本文在利用交替法将原结构分解之后,采用以上2种方法分别对分解后的结构进行求解.
本文首先对Muskhelishvili基本解进行详细介绍,得出其应力、位移和应力强度因子的表达式,然后阐述样条虚边界元法分析平面有限域问题的基本过程,在此基础上,结合交替法提出求解平面问题应力强度因子的样条虚边界元交替法.最后,对复合型中心裂纹方板和I型偏心裂纹矩形板进行数值分析,考察本文方法的准确性和实用性.
1Muskhelishvili基本解
假设在无限大域中的实轴上存在一条裂纹ab,裂纹左尖端和右尖端x轴坐标分别是a和b.假设裂纹上表面的应力为f+y和f+xy,下表面的应力为f-y和f-xy,所求点的坐标为z=x+iy,见图1[13].
由表1可发现当虚实边界距离d减小到20.0的时候结果即收敛,并且与解析解保持较高程度的吻合.为保证结果的稳定性,本算例取d=2.0进行计算.在利用奇异有限元法计算时,裂纹尖端附近采用1/4奇异性单元,其他部分采用四边形单元,根据不同的裂纹长度和角度分别采用不同的单元数和自由度,各种情况自由度见表2.将2种数值方法的计算结果与解析解进行比较,见表2和表3.
从表2和3中可以看出:采用样条虚边界元交替法计算的数值和解析解之间的误差不超过2%,达到较高的精度;而采用奇异有限元法算出的结果与解析解的误差普遍大于本方法,最大误差达5.6%,可知本文方法的精度有明显的提升.另外需要注意的是,裂纹越长,无限大板的假定所带来的差别也越大,因此长裂纹误差变大的现象是可以预见的.
5结论
本文在交替法的基础上,结合Muskhelishvili基本解和样条虚边界元法,提出求解裂纹问题的样条虚边界元交替法.利用该方法对复合型中心裂纹方板和I型偏心裂纹矩形板进行分析后发现,相对于奇异有限元法来说,该方法具有更高精度的应力强度因子计算能力,并且其还能适应各种不同的裂纹分布情况,是一种有效且实用的求解裂纹问题的新型数值分析方法.通过复合型中心裂纹方形板算例分析,发现以下规律:(1) 裂纹长度越大,应力强度因子越大;(2) 随着裂纹与受载荷方向夹角的增大,I类应力强度因子随之增大,II类应力强度因子先增大后减小.
参考文献:
[1]段静波, 李道奎, 雷勇军. 断裂力学分析的奇异有限元法研究综述[J]. 机械强度, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
DUAN J B, LI D K, LEI Y J. Advances in singular finite element method for fracture mechanics analysis[J]. Journal of Mechanical Strength, 2012, 34(2): 262269. DOI: 10.16579/j.issn.1001.9669.2012.02.005.
[2]茹忠亮, 朱传锐, 张友良, 等. 断裂问题的扩展有限元法研究[J]. 岩土力学, 2011, 32(7): 21712186. DOI: 10.3969/j.issn.10007598.2011.07.042.
RU Z L, ZHU C R, ZHANG Y L, et al. Study of fracture problem with extended finite element method[J]. Rock and Soil Mechanics, 2011, 32(7): 21712176. DOI: 10.3969/j.issn.10007598.2011.07.042.
[3]WANG L, ATLURI S N. Recent advances in the alternating method for elastic and inelastic fracture analyses[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 137(1): 158. DOI: 10.1016/00457825(96)010547.
[4]WANG H K, HAYNES R,HUANG H Z, et al. The use of highperformance fatigue mechanics and the extended kalman/particle filters, for diagnostics and prognostics of aircraft structures[J]. Computer Modeling in Engineering & Sciences, 2015, 105(1): 124. DOI: 10.1201/b180092.
[5]NIKISHKOV G P, PARK J H, ATLURI S N. SGBEMFEM Alternating method for analyzing 3D nonplanar cracks and their growth in structural components[J]. CMES, 2001, 2(3): 401422. DOI: 10.3970/cmes.2001.002.401.
[6]TIAN L, DONG L, BHAVANAM S, et al. Mixedmode fracture & nonplanar analyses of cracked Ibeams, using a 3D SGBEMFEM Alternating Method[J]. Theoretical and Applied Fracture Mechanics, 2014, 74: 188199. DOI: 10.1016/j.tafmec.2014.10.002.
[7]TIAN L, DONG L, PHAN N, et al. Threedimensional SGBEMFEM alternating method for analyzing fatiguecrack growth in and the life of attachment lugs[J]. Journal of Engineering Mechanics, 2015, 141(4): 04014142. DOI: 10.1061/(ASCE)EM.19437889.0000870.
[8]KAMAYA M, NISHIOKA T. Analysis of surface crack in cylinder by finite element alternating method[J]. Journal of Pressure Vessel Technology, 2005, 127(2): 165172. DOI: 10.1115/1.1903003.
[9]张建宇, 费斌军. 疲劳多裂纹问题研究进展[J]. 力学与实践, 2003, 25(1): 610. DOI: 10.6052/100009922001051.
ZHANG J Y, FEI B J. Progress of studies on multiple fatigue cracks[J]. Mechanics in Engineering, 2003, 25(1): 610. DOI: 10.3969/j.issn.10000879.2003.01.002.
[10]NISHIOKA T, ATLURI S N. Analytical solution for embedded elliptical cracks, and finite element alternating method for elliptical surface cracks, subjected to arbitrary loadings[J]. Engineering Fracture Mechanics, 1983, 17(3): 247268. DOI: 10.1016/00137944(83)900322.
[11]SU C, HAN D J. Elastic analysis of orthotropic plane problems by the spline fictitious boundary element method[J]. Applied Mathematics and Mechanics, 2002, 23(4): 446453. DOI: 10.1007/BF02436213.
[12]SU C, ZHAO S W, MA H T. Reliability analysis of plane elasticity problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2012, 36(2): 118124. DOI: 10.1016/j.enganabound.2011.07.015.
[13]SU C, XU J. Reliability analysis of Reissner plate bending problems by stochastic spline fictitious boundary element method[J]. Engineering Analysis with Boundary Elements, 2015, 51: 3743. DOI: 10.1016/j.enganabound.2014.10.006.
[14]SU C, XU J. Stochastic spline fictitious boundary element method for analysis of thin plate bending problems with random fields[J]. Engineering Analysis with Boundary Elements, 2015, 58: 8698. DOI: 10.1016/j.enganabound.2015.03.014.
[15]徐芝纶. 弹性力学简明教程[M]. 北京: 高等教育出版社, 2013.
[16]苏成. 分域样条虚边界元法及其在高层建筑结构分析中的应用[D]. 广州: 华南理工大学, 1997.
[17]苏成, 郑淳. 应力强度因子计算的样条虚边界元法[J]. 工程力学, 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
SU C, ZHENG C. Calculation of stress intensity factors by spline fictitious boundary element method[J]. Engineering Mechanics, 2007, 24(8): 4953. DOI: 10.3969/j.issn.10004750.2007.08.009.
[18]陈芳, 王生楠. III复合型裂纹的应力强度因子有限元计算分析[J]. 机械设计与制造, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
CHEN F, WANG S N. III mixedmode crack stress intensity factor of the finite element calculation and analysis[J]. Machinery Design and Manufacture, 2009(8): 2021. DOI: 10.3969/j.issn.10013997.2009.08.008.
[19]中国航空研究院.应力强度因子手册[M]. 北京: 科学出版社, 1981.
(编辑武晓英)