磁共振成像在糖尿病心肌病心肌评价中的进展
2017-01-15梅综述丹审校南京医科大学附属明基医院放射科江苏南京210019
杨 梅综述,周 丹审校(南京医科大学附属明基医院放射科,江苏 南京 210019)
磁共振成像在糖尿病心肌病心肌评价中的进展
杨 梅综述,周 丹审校
(南京医科大学附属明基医院放射科,江苏 南京 210019)
糖尿病心肌病是引起糖尿病患者心力衰竭的主要原因之一。通过磁共振结构和功能成像技术可准确评估糖尿病心肌病的病理学变化,现已应用于糖尿病心肌病临床治疗的疗效评估中。评估糖尿病心肌病的MRI技术主要包括电影成像、MRS、T1 Mapping等。本文主要对MRI技术在糖尿病心肌病心肌评价方面的应用进展进行综述。
糖尿病;心肌病;磁共振成像;治疗结果
糖尿病心肌病是一种代谢性疾病,主要表现为糖代谢、脂代谢及能量代谢的异常,高血糖是其发病机制的核心[1]。长期高血糖可导致心肌胶原糖基化,降解减少[2]。此外,由于葡萄糖有氧代谢障碍、心肌能量供应不足等一系列不良刺激,最终可引起心肌弥漫性纤维化[3-5]。糖尿病心肌病是独立于高血压、冠状动脉疾病、缺血性心脏病及其他心脏病变的心肌疾病[6-7],是造成糖尿病患者心力衰竭的主要原因之一[8]。评价糖尿病患者心肌损害的影像学方法主要包括超声、CT和MRI。随着近年MR成像技术的迅速发展,其在定性和定量评估心肌病变方面独具优势。MR评估糖尿病心肌病的方法主要为磁共振电影成像、MRS及T1 Mapping。这三种方法均可准确评估糖尿病心肌病的心肌结构和功能的变化,反映心肌代谢情况及心肌纤维化程度,且与组织病理学具有高度一致性。此外,MRI技术还具有高度的稳定性和可重复性。本文对MRI技术在糖尿病心肌病心肌评价中的应用进展进行综述。
1 糖尿病心肌病MRI心肌评价技术
1.1电影成像 糖尿病心肌病治疗前后临床常用的监测指标为左心室结构和功能的改变。左心室结构和功能的变化评价指标包括左心室质量(left ventricular mass, LV mass)、左心室舒张末期容积(left ventricular end-diastolic volume, LVEDV)、左心室收缩末期容积(left ventricular end-systolic volume, LVESV)、左心室舒张早期和晚期充盈速率比值(the ratio of Peak E and Peak A, E/A)、左心室每搏输出量(stroke volume, SV)、左心室射血分数(left ventricular ejection fraction, LVEF)等。与超声相比,心脏MR电影成像不基于具体的几何模型,对操作者的技术依赖小,具有较高的可重复性和较高的空间和时间分辨率。通过MR电影成像,可得到高质量的左心室时间—容量关系图、二尖瓣流入模式图以及左心室心肌壁运动及应力图,能准确评估心脏结构及心室舒张和收缩功能[9]。多项研究[10-16]表明,MR电影成像测定心脏结构和功能具有较高的可重复性。
1.2MRS 通过MRS可对特定原子核及化合物进行定量分析,具有无辐射和无需示踪剂的优点。由于心肌细胞内脂质和心肌细胞外脂质所处的微环境不同,两者在1H-MRS上表现为频率不同的2个波峰,而共振峰的峰高和面积可反映化合物的浓度[17]。因此,1H-MRS可用于定量分析心肌细胞内脂质含量。1H-MRS在测量心肌脂肪方面可重复性好。Reingold等[18]应用1.5T MR对体内心肌甘油三脂含量进行不同时间点重复性测量(2次测量间隔90天),结果显示2次测量结果高度相关[r=0.987,变异系数(coefficient of variability, CV)为5%]。van der Meer等[19]对一组健康人群在不同时间点进行重复性测量(2次测量间隔5 min),结果显示2次测量结果的组内相关系数(intraclass correlation coefficient, ICC)为0.81[95%CI(0.58,0.92)],CV为17.9%。
1.3T1 Mapping T1 Mapping技术是基于反转和饱和脉冲激发,在纵向磁化矢量恢复的不同时间采集信号,可通过定量分析T1值对心肌进行评价。目前应用最为广泛的测量T1的MR序列为改良的MOLLI(modified look-locker imaging)序列。T1 Mapping包括平扫T1 Mapping及增强后T1 Mapping。平扫T1 Mapping测量的是整体心肌包括细胞内及细胞外间质的混合信号,其主要缺点为敏感度低,病变心肌与正常心肌的平扫T1值有较多重叠[20]。增强后T1 Mapping的优点为强化后病变心肌的T1值缩短,与正常心肌对比更加明显,更易检出病变;但组织增强后的T1值受较多因素影响,如对比剂的注射剂量、注射后的延迟时间和肾脏排泄功能等[21],均导致定量测量的精确性和可重复性下降。
细胞外容积分数(extracellular volume, ECV)是基于T1 Mapping技术计算的一种相对稳定的指标,通过钆对比剂注射前后分别进行T1 Mapping扫描,经血细胞比容校正后获得。其计算公式为:心肌ECV=(1-HCT)×(心肌ΔR1/血液ΔR1);其中ΔR1=1/T1post-1/T1pre,T1pre及T1post分别为对比剂注射前后的T1值,HCT为对比剂在血液和心肌细胞外间隙中的浓度达到平衡时的血细胞比容。ECV避免了对比剂剂量及肾小球滤过率的影响,对细胞外基质体积的测量更为准确,可重复性更高。ECV可反映未被心肌细胞占据的心肌间质的体积分数[22],与胶原纤维的体积分数相关,在无水肿、淀粉样变及其他形式浸润性疾病的情况下,ECV可作为心肌纤维化的生物学指标[23-24]。
T1 Mapping技术测量心肌ECV的可重复性较好。Chin等[25]研究结果显示,同一观察者对20名健康人重复测量ECV的ICC为1.00,2名观察者重复测量ECV的ICC为0.97,间隔7天2次重复测量的ICC为0.96。另一项对中—重度主动脉狭窄患者进行ECV可重复性测量的研究[26]发现,在测量ECV方面,同一观察者重复测量的CV为1.83%,2名观察者重复测量的CV为2.31%,间隔7天2次重复测量的CV为6.52%。Liu等[27]测量健康人群与心力衰竭患者增强后12 min和25 min的心肌ECV,结果显示2个时间点ECV测量值的r值分别为0.98、0.88,CV分别为2.2%、5.9%。
2 MRI在监测糖尿病心肌病疗效中的应用
2.1饮食疗法 饮食疗法是糖尿病的基础治疗方法,长期限制热量摄入可减少心肌内甘油三脂含量,有效降低血糖,从而改善心功能。而短期限制热量摄入,可引起心肌内甘油三脂的堆积,并伴心功能的下降。Hammer等[28]研究发现,对一组2型肥胖糖尿病患者长期(16周)限制热量后,患者的空腹血糖、糖化血红蛋白、血浆游离脂肪酸(plasma free fatty acids, NEFA)、血浆甘油三脂均明显下降;MRS显示心肌甘油三脂较治疗前下降27%(P=0.019);电影成像显示患者的心功能得到改善,主要表现为心输出量下降18%(P=0.001)、LV mass下降16%(P<0.001),E/A比率增加15%(P=0.019)。Hammer等[29]的另一项研究显示,对2型糖尿病患者短期(3天)限制热量摄入后,心肌MRS显示心肌甘油三酯增加48%(P=0.028),电影成像显示E峰减速下降19%(P=0.004)、E/A比率下降10%(P=0.002)。
2.2运动疗法 运动疗法是糖尿病治疗的重要手段之一。对糖尿病患者而言,不同的运动方式及不同的运动时间对心肌脂肪含量及心功能会产生不同的效果。Jonker等[30]研究发现,2型糖尿病患者经6个月中等强度的耐力运动后,MRS显示心肌甘油三酯含量无明显改变[(0.61±0.13)% vs (0.60±0.13)%,P=0.9],电影成像显示除LVEF增加2%外,其他心功能指标(LV mass、EDV、ESV)及左心室SV与治疗前相比均无明显变化。Schrauwen-Hinderling等[31]研究报道,对2型肥胖糖尿病患者进行中等强度的有氧运动治疗12周后,MRS显示心肌甘油三酯无明显变化[(0.80±0.22)% vs (0.95±0.21)%,P=0.15],但电影成像显示左心室收缩功能得到改善,表现为ESV减少11%(P=0.004),LVEF增加10%(P=0.001)。Cassidy等[32]研究发现,2型糖尿病患者经高强度间隔运动治疗12周后,电影成像显示其左心室结构和舒张、收缩功能均明显改善,主要表现为LV mass增加12%(P<0.05),EDV增加6%(P<0.01),LVEF增加7%(P<0.05),左心室舒张早期充盈率增加24%(P<0.01)。
2.3减肥手术疗法 减肥手术治疗糖尿病是一个新兴的方法,主要通过减轻体质量,从而改变代谢,控制血糖。van Schinkel等[33]监测减肥手术对2型肥胖糖尿病患者心肌脂肪含量及心功能的影响,发现在接受减肥手术16周后患者糖化血红蛋白下降13%(P<0.05),但心肌脂肪含量、左心室舒张和收缩功能均未见明显改善。
2.4药物治疗 目前治疗糖尿病的药物主要为口服药物和胰岛素。不同药物具有不同的药理作用,对心脏的效应也不尽相同。van der Meer等[34]对78例无任何心血管疾病的2型糖尿病患者分别采用吡格列酮或二甲双胍治疗24周后进行MR成像,发现2种药物均未能明显降低心肌脂肪含量,但应用吡格列酮可明显改善左室舒张功能,表现为EDV增加4%(P=0.045)、E峰减速8%(P=0.034)、左心室SV增加5%(P=0.016)。McGavock等[35]研究结果显示,应用罗格列酮治疗2型糖尿病6个月后,虽然患者空腹血糖明显减低[(166±44)mg/dl vs (150±67)mg/dl,P<0.05],但MRI提示心肌甘油三酯含量和心功能均无明显改变。Jankovic等[36]研究发现,2型糖尿病患者通过短期(10天)胰岛素治疗后,MRI显示其心肌甘油三酯增加80%(P=0.008),LV mass增加13%(P<0.05),室间隔厚度增加13%(P<0.05),但左心室舒张和收缩功能均未见明显改善。Giannetta等[37]监测磷酸二酯酶抑制剂(西地那非)对糖尿病的效果,发现2型糖尿病患者服用西地那非3个月后,电影成像显示其LVEDV指数上升6%(P<0.05),左心室质量—容积比率平均下降0.17(P=0.013),左心室SV增加10%(P<0.05),LVEF增加4%(P=0.002)。糖尿病患者肾素—血管紧张素—醛固酮系统(renin-angiotensin-aldosteronesystem, RAAS)被激活,升高的血管紧张素Ⅱ(angiotensin Ⅱ, AngⅡ)和醛固酮通过各自的受体刺激心肌成纤维细胞增生及胶原代谢改变,最终导致心肌细胞坏死和心肌纤维化。Wong等[38]对1 176例2型糖尿病患者用肾素-血管紧张素拮抗剂治疗1.3年后,T1 mapping显示ECV较治疗前明显减小(P=0.028)。
综上所述,在糖尿病心肌病的临床治疗试验中,评估不同的心肌指标需要不同的MR成像方法。如将心功能作为主要终点事件,则评估方法以心脏电影成像为主。如将心肌脂肪含量的变化对心功能的影响作为主要终点事件之一,成像方案中除了心脏电影成像外,还需增加MRS。如需同时观察心肌纤维化程度,则需增加T1 Mapping检查。MRI可动态监测糖尿病心肌病不同治疗方式、不同药物的治疗效果。随着MRI技术的不断发展,其成像速度不断加快、分辨力不断提高,必将进一步提高对糖尿病心肌病定性和定量评估的敏感度和准确性。
[1] Aneja A, Tang WH, Bansilal S, et al. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic cllenges, and therapeutic options. Am J Med, 2008,121(9):748-757.
[2] Ng AC, Auger D, Delgado V, et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T1 mapping and subclinical myocardial dysfunction in diabetic patients: A pilot study. Circ Cardiovasc Imaging, 2012,5(5):51-59.
[3] van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav, 2008,94(2):231-241.
[4] Mazumder PK, O'Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes, 2004,53(9):2366-2374.
[5] How OJ, Aasum E, Severson DL, et al. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes, 2006,55(2):466-473.
[6] Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation, 2007,115(25):3213-3223.
[7] Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med, 2006,355(3):251-259.
[8] Tang WH. Glycemic control and treatment patterns in patients with heart failure. Curr Cardiol Rep, 2007,9(3):242-247.
[9] Westenberg JJ. CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep, 2011,4(2):149-158.
[10] Hanneman K, Kino A, Cheng JY, et al. Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imaging, 2016,44(2):383-392.
[11] Clay S, Alfakih K, Messroghli DR, et al. The reproducibility of left ventricular volume and mass measurements: A comparison between dual-inversion-recovery black-blood sequence and SSFP. Eur Radiol, 2006,16(1):32-37.
[12] Mooij CF, de Wit CJ, Graham DA, et al. Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging, 2008,28(1):67-73.
[13] Luijnenburg SE, Robbers-Visser D, Moelker A, et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging, 2010,26(1):57-64.
[14] Grothues F, Smith GC, Moon JC, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol, 2002,90(1):29-34.
[15] Bellenger N, Francis J, Davies C, et al. Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson, 2000,2(1):15-22.
[16] Hudsmith LE, Petersen SE, Tyler DJ, et al. Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 vs. 3 Tesla: A validation study. J Magn Reson Imaging, 2006,24(2):312-318.
[17] Xiao L, Wu EX. Diffusion-weighted magnetic resonance spectroscopy: A novel approach to investigate intramyocellular lipids. Magn Reson Med, 2011,66(4):937-944.
[18] Reingold JS, McGavock JM, Kaka S, et al. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: Reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab, 2005,289(5):E935-E939.
[19] van der Meer RW, Doornbos J, Kozerke S, et al. Metabolic imaging of myocardial triglyceride content: Reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology, 2007,245(1):251-257.
[20] Abdel-Aty H, Boyé P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J Am Coll Cardiol, 2005,45(11):1815-1822.
[21] Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magn Reson Med, 2011,65(5):1407-1415.
[22] Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J, 2012,33(10):1268-1278.
[23] Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging, 2013,6(3):373-383.
[24] aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: Quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging, 2015,16(2):210-216.
[25] Chin CW, Semple S, Malley T, et al. Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging, 2014,15(5):556-565.
[26] Singh A, Horsfield MA, Bekele S, et al. Myocardial T1 and extracellular volume fraction measurement in asymptomatic patients with aortic stenosis: Reproducibility and comparison with age-matched controls. Eur Heart J Cardiovasc Imaging, 2015,16(7):763-770.
[27] Liu S, Han J, Nacif MS, et al. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: Sample size considerations for clinical trials. J Cardiovasc Magn Reson, 2012, 14(1):72-79.
[28] Hammer S, Snel M, Lamb HJ, et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol, 2008,52(12):1006-1012.
[29] Hammer S, van der Meer RW, Lamb HJ, et al. Short-term flexibility of myocardial triglycerides and diastolic function in patients with type 2 diabetes mellitus. Am J Physiol Endocrinol Metab, 2008,295(3):714-718.
[30] Jonker JT, de Mol P, de Vries ST, et al. Exercise and type 2 diabetes mellitus: Changes in tissue-specific fat distribution and cardiac function. Radiology, 2013,269(2):434-442.
[31] Schrauwen-Hinderling VB, Meex RC, Hesselink MK, et al. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction. Cardiovasc Diabetol, 2011,10:47.
[32] Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia, 2016,59(1):56-66.
[33] van Schinkel LD, Sleddering MA, Lips MA, et al. Effects of bariatric surgery on pericardial ectopic fat depositions and cardiovascular function. Clin Endocrinol (Oxf), 2014,81(5):689-695.
[34] van der Meer RW, Rijzewijk LJ, de Jong HW, et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation, 2009,119(15):2069-2077.
[35] McGavock J, Szczepaniak LS, Ayers CR, et al. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: A randomised, placebo-controlled trial. Diab Vasc Dis Res, 2012,9(2):131-137.
[36] Jankovic D, Winhofer Y, Promintzer-Schifferl M, et al. Effects of insulin therapy on myocardial lipid content and cardiac geometry in patients with type-2 diabetes mellitus. PloS One, 2012,7(12):e50077.
[37] Giannetta E, Isidori AM, Galea N, et al. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: A randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation, 2012,125(19):2323-2333.
[38] Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J, 2014,35(10):657-664.
Progresses of MRI in evaluating myocardium of diabetic cardiomyopathy
YANGMei,ZHOUDan*
(DepartmentofRadiology,BenQMedicalCenter,NanjingMedicalUniversity,Nanjing210019,China)
Diabetic cardiomyopathy is one of the major causes of congestive heart failure in patients with diabetes. The histological changes of the diabetic cardiomyopathy can be accurately characterized by MR structure and functional imaging techniques, such as CINE imaging, MRS and T1 Mapping. These cardiac MRI techniques have been used to evaluate the treatment effect of diabetic cardiomyopathy. The progresses of MRI techniques in evaluating myocardium of diabetic cardiomyopathy were reviewed in this article.
Diabetes mellitus; Cardiomyopathy; Magnetic resonance imaging; Treatment outcome
杨梅(1982—),女,江苏连云港人,在读硕士,主治医师。研究方向:心血管影像诊断学。E-mail: mjym2syr@163.com
周丹,南京医科大学附属明基医院放射科,210019。
E-mail: Danny.zhou@benqmedicalcenter.com
2016-10-25
2017-05-25
10.13929/j.1003-3289.201610112
R445.2; R541
A
1003-3289(2017)07-1104-05