APP下载

多系统萎缩与帕金森病的鉴别诊断

2017-01-13郑奎宏戚晓昆

转化医学杂志 2017年2期
关键词:脑桥黑质张量

郑奎宏,戚晓昆,马 林

多系统萎缩与帕金森病的鉴别诊断

郑奎宏,戚晓昆,马 林

阐述多系统萎缩与帕金森病的影像学鉴别诊断表现,探讨各种影像学检查手段、磁共振各种成像序列在鉴别诊断中的作用,其中包括各种新的成像序列、成像方法(如磁敏感加权成像、弥散张量成像、磁共振波谱成像及经颅超声、单光子发射计算机断层成像术、正电子发射计算机断层显像等)。

多系统萎缩;帕金森病;磁共振成像;影像学

帕金森病(Parkinson’s disease,PD)和多系统萎缩(multiple system atrophy,MSA)[1]同为退行性神经系统疾病,其临床症状经常有重叠,甚至临床表现常常相同或相似,如帕金森综合征、自主神经症候等。这2类患者常常以运动症状起病,如运动迟缓、少动强直、间歇性震颤和行走困难。MSA患者的中轴性运动障碍表现尤为突出,如构音障碍、言语困难、姿势异常、尿便障碍,而体位性低血压常常导致晕厥和跌倒。然而,上述症状也常常见于PD患者中,单单依靠临床症状及体征目前难以将这2类疾病区分开,尤其在疾病早期两者在临床上很难鉴别[2-4]。实际上临床神经病理尸检研究显示,MSA是PD误诊的最常见的原因[5]。准确的诊断对患者的治疗、预后以及研究非常重要、非常有意义。

近几年来,随着神经影像技术的发展,其在鉴别诊断中的作用越来越受到普遍关注。脑部MRI在鉴别诊断中发挥了重要的作用[6]。多种神经影像新技术、新序列也已经应用于神经退行性疾病的研究中,其中包括磁敏感加权成像、弥散张量成像、磁共振波谱成像、多次激励弥散加权序列以及短反转时间的反转恢复序列等[5-6]。这些研究普遍关注于壳核、黑质、小脑以及脑桥的影像改变。最新的一项研究应用磁共振弥散张量技术的各项参数以及径线测量技术,在鉴别MSA与PD中取得了较高的敏感性和特异性[7]。

作者着重阐述超声、CT、MRI及核医学在MSA与PD鉴别诊断中的影像表现与特点,目的是为放射科医生以及神经科医生提供一个有效的方法。

1 PD与MSA神经解剖学基础

PD患者中,黑质致密带的多巴胺能神经元变性导致纹状体的多巴胺缺失是其病理学特征,下丘脑核也常常受累[8]。MSA患者中除了黑质、纹状体,脑桥、小脑、桥臂也明显受累,病理上可以见到壳核、黑质后侧部、蓝斑、下橄榄、脑桥核、小脑浦肯野细胞、脊髓中间外侧柱神经元进行性缺失及胶质增生,而丘脑、下丘脑核、丘尾状核、苍白球、齿状核、前庭核、前角细胞及锥体束很少受累[9]。这些病理上的不同改变在影像学上并不一定能一一显示,但是这些病理变化能够提供关键影像改变的诊断要点。

2 感兴趣区的铁沉积、壳核边缘高信号征与脑桥十字征

磁共振可以精确评估脑内的铁沉积。目前常用的序列包括T2加权、T2∗加权梯度回波以及磁敏感加权序列[10-12]。据报道各种神经退行性疾病中铁沉积的类型也有不同,黑质、尾状核、苍白球、丘脑铁沉积可见于PD、MSA患者以及正常人[10]。MSA患者壳核后部以及丘脑枕部铁沉积明显,是其鉴别诊断的主要区域[10,13-14]。PD患者的锥体外系症状严重程度与黑质铁沉积程度高度相关[15]。相关研究表明,PD患者使用磁敏感加权相位值定量测量黑质的铁沉积与PD综合评分量表运动评分呈正相关[11-12]。所以采用对铁沉积敏感的 T2∗加权梯度回波或者磁敏感加权序列分析、评价壳核后部以及丘脑枕部铁沉积的类型,可以明显提高PD和MSA的鉴别诊断准确性。相关研究也表明,采用磁敏感加权序列定量测量黑质铁沉积与PD患者疾病严重程度也有相关性[12]。另一种分析、评价中脑铁沉积的方法是经颅超声多普勒技术,黑质高回声对诊断PD有较高的敏感性和特异性,而屏状核高回声更常见于MSA患者中[16]。然而一项研究表明,对于早期出现帕金森样症状的患者经颅超声并没有得到满意的结果[17]。

T2加权壳核边缘高信号位于壳核外侧缘,正常人往往由于铁沉积而呈现低信号,此高信号常常是神经组织变性或胶质增生导致的。据报道1.5 T磁共振此征象在MSA壳核型、PD患者及正常人群的鉴别诊断中具有100%的特异性和阳性预测值[18]。对正电子发射计算机断层显像(positron emission tomography,PET)研究显示,该征象与壳核葡萄糖低代谢、突触后多巴胺受体密度减低有相关性[19-20]。然而,其他研究也有PD患者具有此类征象的报道[21-22]。使用高场强MRI研究显示,T2加权壳核边缘高信号征正常人也可见到;此研究同样发现壳核边缘高信号征在高场强磁共振显示的更加明显,可能是由于化学位移伪影和截断伪影造成的[23]。还有类似研究显示,运用液体衰减反转恢复序列并同时出现壳核萎缩的征象时,壳核边缘高信号征对诊断MSA具有更高的特异性[20,24]。

脑桥十字形T2加权高信号被称为脑桥十字征,其形成机制常常被认为是脑桥中部的脑桥横行纤维选择性髓鞘脱失,而皮质脊髓束相对保留所导致的[18]。目前大多数研究者认为此征象是鉴别MSA与PD的具有高度特异性的征象之一。然而,此征象在脊髓小脑共济失调等其他小脑变性疾病中也可见到[25]。脑桥十字征在继发于脊髓小脑共济失调的帕金森综合征、血管炎、克-雅病患者中也有报道[26-28]。

3 容积分析与线性参数分析方法

如果某种病程中其脑组织中特定部位的容积出现萎缩,那么容积分析对此类疾病的诊断还是非常有帮助。磁共振可以通过多平面重建和薄层扫描,从3个方向上来测量萎缩的程度进而判断疾病的类型,以达到鉴别诊断的目的。通过运用磁共振容积分析的各种信号采集技术,可以获得高分辨率的图像、可以进行三维重建;也可以采用三维采集技术获得最小的各向同性的像素,进而进行可重复性半自动数据分析,然而这类测量工作不仅耗费额外的时间精力,而且对于相对比较繁忙的影像中心也难以实现。随着近年来相关技术的进步,全自动分析软件的出现解决了这个问题[29-30]。MSA患者相对于PD患者和正常人来说,其小脑、丘脑、壳核、脑干容积减小具有显著性差异[7,30],临床上用以鉴别MSA与PD十分有效。由于采用的各种容积分析方法有所不同,其绝对定量测量分析临床应用还非常困难。

线性参数测量临床应用非常简单、方便,很容易就可以在常规T2加权图像上测量黑质宽度、小脑中脚宽度、脑桥前后径的值[31]。MSA患者脑桥、小脑区域明显萎缩,其小脑中脚宽度、脑桥前后径的值相对于PD患者显著性减低,小脑中脚宽度小于14.6 mm对于MSA诊断具有100%特异性[7]。由于只有20%的PD患者MRI可以见到异常信号,所以常规磁共振检查对于鉴别PD患者与正常人作用非常有限[32-33]。有的研究对多系统萎缩帕金森型(multiple system atrophy-parkinsonian type,MSA-p)、PD组和健康对照组应用磁共振T1加权成像对脑桥面积(pontine,P)、中脑面积(midbrain,M)、小脑中脚(middle cerebellar peduncle,MCP)宽度及小脑上脚(superior cerebellar peduncle,SCP)宽度进行测量,通过计算P/M、MCP/ SCP、磁共振帕金森指数[(P/M)×(MCP/SCP)]等复合指标来筛选最佳鉴别指标,研究发现P/M值可有助于诊断MSA-p,MSA-p患者P/M值显著小于PD患者(P<0.001)及健康对照组(P<0.001)[34]。据报道,PD晚期患者的黑质致密带宽度显著降低,但是其对于正常人的平均差异只有1 mm,临床应用非常困难[35]。纵向研究结果显示,在疾病早期MSA进展明显快于PD,MRI变化也更加显著[36-37]。文献回顾性分析表明,小脑中脚宽度、脑桥前后径是最可靠的线性参数。

4 髓鞘化参数分析与磁共振波谱分析

磁共振扩散张量成像是有效评价髓鞘完整性的方法,运用该技术可以定量分析神经纤维的断裂和缺失。神经退行性疾病中部分神经纤维中断导致各方向水弥散增加,其各向异性分数值降低而平均扩散度增加。PD患者与正常人的扩散张量成像参数分析研究表明,PD患者黑质的各向异性分数值显著低于正常人,其壳核、尾状核的各向异性分数值也显著低于正常人[38-40]。选取壳核作为感兴趣区鉴别MSA与PD,其表观扩散系数值大于0.79×103mm2/ s的敏感性达到85%、特异性达到了89%[41]。相对于PD患者,MSA患者黑质、壳核、脑桥的各向异性分数值降低而平均扩散度增加,然而这种差异非常小,限制了其作为PD生物学指标的临床应用[42]。应用扩散张量成像能够有效鉴别PD与MSA,MSA患者小脑、苍白球特别是小脑中脚的表观扩散系数值或各向异性分数值减低明显,平均扩散度增加明显[43-45]。扩散张量成像研究显示,MSA患者的脑桥十字征异常改变比T2加权表现得异常累及的范围更广,其脑桥横行纤维、皮质脊髓束、脑桥、小脑各向异性分数值明显减低,平均扩散度明显增加,这些改变和神经病理研究结果相一致[46]。另一种测量髓鞘化程度与轴索密度的方法是磁化传递成像,这种技术类似于扩散张量技术,可以对局部特定的感兴趣区测量磁化传递率。1.5 T磁共振研究表明,MSA患者黑质、壳核、苍白球的磁化传递率相对PD患者明显降低[47]。应用于观察脑部微结构改变的研究结果的一致性表明,这2种技术具有较高的可靠性和准确性。磁化传递成像、扩散张量技术结合常规MRI技术,通过全面的临床评估,可以有效地避免临床工作中对神经退行性疾病的误诊。

磁共振波谱分析鉴别PD与MSA的相关文献报道,其基于乙酰天冬氨酸(N-acetylaspartate,NAA)/胆碱复合物和NAA/肌酸复合物的比值测量方法得到的结果混乱、价值有限。有的研究应用磁共振波谱来鉴别MSA-p、多系统萎缩小脑型、进行性核上性麻痹(progressive supranuclear palsy,PSP)及PD,与PD相比较,MSA-p、PSP患者在苍白球、壳核及豆状核的NAA值显著降低[48]。有的研究运用定量缩减方法显示,MSA患者的苍白球、壳核、屏状核NAA值明显减低;也有报道表明MSA、PD患者NAA值均下降,而基底节PD患者NAA值更接近正常[49-51]。

5 核医学:单光子发射计算机断层成像术、PET

近年来的医学影像技术进步使评估突触前多巴胺转运功能以及定量测量多巴胺终端丢失成为可能。多巴胺转运蛋白(dopamine transporter,DAT)可以反映患者多巴胺能神经元的活性,在一些神经系统变性病中,通过123I-β-CIT单光子发射计算机断层成像术(single-photon emission computed tomography,SPECT)、PET研究发现,多巴胺能的丢失能实现可视化,MSA-p、PD、PSP患者均存在123I-β-CIT摄取减少,反映纹状体DAT的密度减低。基于临床诊断的有关报道结果显示,根据SPECT放射性核素分布对称性程度可以鉴别MSA与PD,MSA患者核素分布更加对称、多巴胺结合降低更加明显[52-54]。有研究通过应用不同的示踪剂对MSA、PD、PSP组患者和健康对照组进行DAT及D2受体显像发现,3组患者壳核后部DAT均明显低于健康对照组,3组间差异无统计学意义,提示3种疾病均存在突触前病变,病变程度无明显差异[54]。一项基于组织病理学诊断MSA与PD的相关研究得到的结果却相反,MSA患者多巴胺受体核素分布比 PD更加不对称[55]。另一项研究也报道MSA与PD的多巴胺受体核素分布没有显著性差异[56]。有研究采用相同的方法比较了PD患者与MSA患者多巴胺能神经元的贮备情况,发现2组纹状体DAT密度下降一致,PD患者的D2受体密度未见下降,而75%的MSA-p患者D2受体密度下降,因此认为D2受体密度下降有助于诊断MSA[57]。从上述有关研究结果的不一致性可以看出,SPECT多巴胺受体显像鉴别MSA与PD并不是一个可靠的方法。缺乏明确的鉴别MSA与PD的影像证据、检查费昂贵、多巴胺受体核素摄取率低下、较高的放射剂量和较高的技术要求使得多巴胺受体显像临床应用前景暗淡。

PET是一种功能成像方法,静息态脑的放射性18F标志的葡萄糖显像已经被欧洲核医学协会批准用于临床鉴别 PD与不典型帕金森综合征[58]。放射性18F标志的葡萄糖显像PET通过显示脑局部葡萄糖代谢情况来评估神经元活动,异常代谢网络如小脑、内侧丘脑、壳核后部、尾状核、下丘脑区、边缘系统以及额叶的下部与外侧部区域,PD患者葡萄糖摄取明显高于MSA患者;其代谢网络缺陷区主要累及丘脑外侧区、后联合皮质以及顶叶下部[59-60]。有应用放射性18F标志的葡萄糖PET显像进行研究,发现MSA患者双侧壳核及小脑代谢活性减低;PD患者纹状体区的葡萄糖代谢相对保留[61]。

临床症状与体征并结合MRI可以明显提高临床鉴别PD与MSA的准确性,PD患者的MRI检查少有明显异常改变;而MSA则有更多更明显的影像异常特征,如脑桥十字征、壳核低信号及脑桥、苍白球、小脑萎缩;磁敏感加权成像、线性测量、容积分析以及扩散张量、磁化传递成像的异常改变正是上述异常征象的直接反映。没有某一个影像学征象可以单独具有高度敏感性与特异性,综合上述影像学征象并应用决策图表能够进一步提高诊断的准确性[7]。

[1]Holshouser BA,Tong KA,Ashwal S,et al.Prospective longitudinal protonmagnetic resonance spectroscopic imaging in adult traumatic brain injury[J].JMagn Reson Imaging,2006,24(1):33-40.

[2]Stefanova N,Bücke P,Duerr S,et al.Multiple system atrophy:an update[J].Lancet Neurol,2009,8(12):1172-1178.

[3]Horimoto Y,Aiba I,Yasuda T,et al.Longitudinal MRI study of multiple system atrophy--when do the findings appear,and what’s the course?[J].J Neurol,2002,249 (7):847-854.

[4]Ramli N,Nair SR,Ramli NM,et al.Differentiating multiplesystem atrophy from Parkinson’s disease[J].Clin Rad,2015,70(5):555-564.

[5]Oikawa H,Sasaki M,Tamakawa Y,et al.The substantia nigra in Parkinson disease:proton density-weighted spinecho and fast short inversion time inversion-recovery MR findings[J].AJNR Am J Neuroradiol,2002,23(10):1747-1756.

[6]Adachi M,Hosoya T,Haku T,et al.Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted MR imaging [J].AJNR Am JNeuroradiol,1999,20(8):1500-1506.

[7]Nair SR,Tan LK,Mohd Ram li N,et al.A decision tree for differentiating multiple system atrophy from Parkinson’s disease using 3-T MR imaging[J].Eur Radiol,2013,23 (6):1459-1466.

[8]Obeso JA,Rodriguez-Oroz MC,Benitez-Temino B,et al. Functional organization of the basal ganglia:therapeutic implications for Parkinson’s disease[J].Mov Disord,2008,23 (Suppl 3):S548-S559.

[9]Wenning GK,Tison F,Ben Shlomo Y,et al.Multiple system atrophy:a review of 203 pathologically proven cases[J]. Mov Disord,1997,12(2):133-147.

[10]Wang Y,Butros SR,Shuai X,et al.Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging[J].AJNR Am JNeuroradiol,2012,33(2):266-273.

[11]Zhang J,Zhang Y,Wang J,et al.Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging:an in vivo MR study[J].Brain Res,2010,1330: 124-130.

[12]Reiter E,Mueller C,Pinter B,et al.Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism[J].Mov Disord,2015,30(8): 1068-1076.

[13]Hingwala DR,Kesavadas C,Thomas B,et al.Susceptibility weighted imaging in the evaluation ofmovement disorders [J].Clin Radiol,2013,68(6):338-348.

[14]Vymazal J,Righini A,Brooks RA,et al.T1 and T2 in the brain of healthy subjects,patients with Parkinson disease,and patientswith multiple system atrophy:relation to iron content[J].Radiology,1999,211(2):489-495.

[15]Jin L,Wang J,Jin H,et al.Nigral iron deposition occurs acrossmotor phenotypes of Parkinson’s disease[J].Eur J Neurol,2012,19(7):969-976.

[16]Behnke S,Berg D,Naumann M,et al.Differentiation of Parkinson’s disease and atypical Parkinsonian syndromes by transcranial ultrasound[J].JNeurol Neurosurg Psychiatry,2005,76(3):423-425.

[17]Bouwmans AE,Vlaar AM,MessWH,etal.Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease:prospective cohort study in 196 patients[J].BMJOpen,2013,3(4): e002613.

[18]Schrag A,Kingsley D,Phatouros C,et al.Clinical usefulness ofmagnetic resonance imaging inmultiple system atrophy[J].J Neurol Neurosurg Psychiatry,1998,65(1): 65-71.

[19]Antonini A,Leenders KL,Vontobel P,et al.Complementary PET studies of striatalneuronal function in the differential diagnosis betweenmultiple system atrophy and Parkinson’s disease[J].Brain,1997,120(Pt12):2187-2195.

[20]Gilman S,Koeppe RA,Junck L,et al.Patterns of cerebral glucosemetabolism detected with positron emission tomography differ inmultiple system atrophy and olivopontocerebellar atrophy[J].Ann Neurol,1994,36(2):166-175.

[21]Ito S,ShiraiW,Hattori T.Evaluating posterolateral linearization of the putaminal margin with magnetic resonance imaging to diagnose the Parkinson variant ofmultiple system atrophy[J].Mov Disord,2007,22(4):578-581.

[22]Seppi K,Schocke MF,Mair KJ,et al.Progression of putaminal degeneration in multiple system atrophy:a serial diffusion MR study[J].Neuroimage,2006,31(1):240-245.

[23]Lee WH,Lee CC,Shyu WC,et al.Hyperintense putaminal rim sign is nota hallmark ofmultiple system atrophy at3T [J].AJNR Am JNeuroradiol,2005,26(9):2238-2242.

[24]Block SA,Bakshi R.FLAIR MRIof striatonigral degeneration[J].Neurology,2001,56(9):1200.

[25]Bhattacharya K,Saadia D,Eisenkraft B,et al.Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease:a diagnostic algorithm[J].Arch Neurol,2002,59(5):835-842.

[26]Muqit M,Mort D,Miszkiel K,et al.“Hot cross bun”sign in a patientwith parkinsonism secondary to presumed vasculitis[J].JNeurol Neurosurg Psychiatry,2001,71(4): 565-566.

[27]Lee YC,Liu CS,Wu HM,etal.The‘hot cross bun’sign in the patients with spinocerebellar ataxia[J].Eur JNeurol,2009,16(4):513-516.

[28]Soares-Fernandes JP,Ribeiro M,Machado A.“Hot cross bun”sign in variant Creutzfeldte-Jakob disease[J].ANJR Am JNeuroradiol,2009,30(3):E37.

[29]Fischl B,Salat DH,Busa E,et al.Whole brain segmentation:automated labeling of neuroanatomical structures in the human brain[J].Neuron,2002,33(3):341-355.

[30]Han X,Jovicich J,Salat D,et al.Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength,scanner upgrade and manufacturer[J].Neuroimage,2006,32(1):180-194.

[31]Messina D,Cerasa A,Condino F,et al.Patterns of brain atrophy in Parkinson’s disease,progressive supranuclear palsy and multiple system atrophy[J].Parkinsonism Relat Disord,2011,17(3):172-176.

[32]Sitburana O,Ondo WG.Brain magnetic resonance imaging (MRI)in parkinsonian disorders[J].Parkinsonism Relat Disord,2009,15(3):165-174.

[33]Seppi K,PoeweW.Brainmagnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes[J].Neuroimaging Clin North Am,2010,20(1):29-55.

[34]Quattrone A,Nicoletti G,Messina D,et al.MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variantofmultiple system atrophy[J].Radiology,2008,246(1):214-221.

[35]Sohmiya M,Tanaka M,Aihara Y,et al.Structural changes in the midbrain with aging and Parkinson’s disease:an MRIstudy[J].Neurobiol Aging,2004,25(4):449-453.

[36]Hauser TK,Luft A,SkalejM,etal.Visualization and quantification of disease progression in multiple system atrophy [J].Mov Disord,2006,21(10):1674-1681.

[37]Reginold W,Lang AE,Marras C,et al.Longitudinal quantitative MRI in multiple system atrophy and progressive supranuclear palsy[J].Parkinsonism Relat Disord,2014,20(2):222-225.

[38]Vaillancourt DE,Spraker MB,Prodoehl J,et al.High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease[J].Neurology,2009,72(16):1378-1384.

[39]Chan LL,Rumpel H,Yap K,et al.Case control study of diffusion tensor imaging in Parkinson’s disease[J].JNeurol Neurosurg Psychiatry,2007,78(12):1383-1386.

[40]Yoshikawa K,Nakata Y,Yamada K,et al.Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI[J].J Neurol Neurosurg Psychiatry,2004,75(3):481-484.

[41]Umemura A,Oeda T,Hayashi R,et al.Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation ofmultiple system atrophy and Parkinson’s disease[J].PloSOne,2013,8(4):e61066.

[42]Schwarz ST,AbaeiM,Gontu V,etal.Diffusion tensor imaging of nigral degeneration in Parkinson’s disease:a region-of-interest and voxel-based study at3 T and systematic review with meta-analysis[J].Neuroimage Clin,2013,3(10):481-488.

[43]Tsukamoto K,Matsusue E,Kanasaki Y,et al.Significance of apparent diffusion coefficient measurement for the differential diagnosis ofmultiple system atrophy,progressive supranuclear palsy,and Parkinson’s disease:evaluation by 3.0-TMR imaging[J].Neuroradiology,2012,54(9):947-955.

[44]Ito M,Watanabe H,KawaiY,etal.Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy[J].JNeurol Neurosurg Psychiatry,2007,78(7):722-728.

[45]Nilsson C,Markenroth Bloch K,Brockstedt S,et al.Tracking the neurodegeneration of parkinsonian disordersd--a pilot study[J].Neuroradiology,2007,49(2):111-119.

[46]Loh KB,Rahmat K,Lim SY,et al.A hot cross bun sign from diffusion tensor imaging and tractography perspective [J].Neurol India,2011,59(2):266-269.

[47]Eckert T,Sailer M,Kaufmann J,et al.Differentiation of idiopathic Parkinson’s disease,multiple system atrophy,progressive supranuclear palsy,and healthy controls usingmagnetization transfer imaging[J].Neuroimage,2004,21(1): 229-235.

[48]Guevara CA,Blain CR,Stahl D,et al.Quantitativemagnetic resonance spectroscopic imaging in Parkinson’s disease,progressive supranuclear palsy and multiple system atrophy[J].Eur JNeurol,2010,17(9):1193-1202.

[49]Clarke CE,Lowry M.Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease and multiple system atrophymeasured by proton magnetic resonance spectroscopy[J].Eur JNeurol,2000,7(6):661-665.

[50]Davie CA,Wenning GK,Barker GJ,et al.Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy[J]. Ann Neurol,1995,37(2):204-210.

[51]Watanabe H,Fukatsu H,Katsuno M,et al.Multiple regional 1H-MR spectroscopy in multiple system atrophy:NAA/ Cr reduction in pontine base as a valuable diagnostic marker[J].JNeurol Neurosurg Psychiatry,2004,75(1):103-109.

[52]Varrone A,Marek KL,Jennings D,et al.[(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy[J].Mov Disord,2001,16(6):1023-1032.

[53]Knudsen GM,Karlsborg M,Thomsen G,et al.Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease andmultiple system atrophy[J].Eur J Nucl Med Mol Imaging,2004,31(12):1631-1638.

[54]Kim YJ,Ichise M,Ballinger JR,et al.Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD,MSA,and PSP[J].Mov Disord,2002,17(2):303-312.

[55]Perju-Dumbrava LD,Kovacs GG,Pirker S,etal.Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy[J].Mov Disord,2012,27(1):65-71.

[56]PirkerW,Asenbaum S,Hauk M,et al.Imaging serotonin and dopamine transporterswith 123I-beta-CIT SPECT:binding kinetics and effects of normal aging[J].JNucl Med,2000,41(1):36-44.

[57]Plotkin M,Amthauer H,Klaffke S,et al.Combined 123IFP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes:study on 72 patients[J].J Neural Transm,2005,112(5):667-692.

[58]Varrone A,Asenbaum S,Vander Borght T,et al.European Association of Nuclear Medicine Neuroimaging Committee. EANM procedure guidelines for PET brain imaging using [18F]FDG,version 2[J].Eur JNucl Med Mol Imaging,2009,36(12):2103-2110.

[59]Garraux G,Phillips C,Schrouff J,et al.Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes[J]. Neuroimage Clin,2013,2(6):883-893.

[60]Teune LK,Bartels AL,de Jong BM,et al.Typical cerebral metabolic patterns in neurodegenerative brain diseases[J]. Mov Disord,2010,25(14):2395-2404.

[61]Tang CC,Poston KL,Eckert T,et al.Differential diagnosis of parkinsonism:a metabolic imaging study using pattern analysis[J].Lancet Neurol,2010,9(2):149-158.

Differentiating m ultip le-system atrophy from Parkinson’s disease

ZHENG Kuihong1,2,QIXiaokun3,MA Lin1
(1.Department of Radiology,Chinese PLA General Hospital,Beijing 100853,China;2.Department of Radiology,Navy General Hospital,Beijing 100048,China;3.Department of Neurology,Navy General Hospital,Beijing 100048,China)

It is to illustrate the differentiating features ofmultiple-system atrophy from Parkinson’s disease at differentmodality,in particular,magnetic resonance imaging(MRI).The new advanced MRI in the differentiation will be discussed,including newermethods and new sequences,such as susceptibility-weighted sequences,diffusion tensor imaging,magnetic resonance spectroscopy,transcranial ultrasound,single-photon emission computed tomography,and positron emission tomography.

Multiple system atrophy(MSA);Parkinson’s disease(PD);Magnetic resonance imaging(MRI);Imaging

R445.2;R742.5

A

2095-3097(2017)02-0116-06

10.3969/j.issn.2095-3097.2017.02.014

2016-12-12 本文编辑:徐海琴)

首都临床特色应用研究专项(Z151100004015017)

100853北京,解放军总医院放射科(郑奎宏,马 林);100048北京,海军总医院放射科(郑奎宏),神经内科(戚晓昆)

马 林,Email:cjr.malin@vip.163.com

猜你喜欢

脑桥黑质张量
一类张量方程的可解性及其最佳逼近问题 ①
影像学表现为“脑桥半切征”的急性脑桥梗死患者的临床特征分析
15例卒中预警综合征的临床分析
严格对角占优张量的子直和
四元数张量方程A*NX=B 的通解
帕金森病模型大鼠黑质磁共振ESWAN序列R2*值与酪氨酸羟化酶表达相关性的研究
腹腔注射右旋糖酐铁对大鼠嗅球、黑质和纹状体区DAT蛋白表达的影响
一类结构张量方程解集的非空紧性
脑桥小脑束Wallerian变性的MRI表现
经颅超声在帕金森病诊断中的应用进展