谷维素在糖尿病神经病变中的应用研究进展
2017-01-12孙新娟陈金安胡志为王爱萍中国人民解放军第四五四医院江苏南京210000
孙新娟,陈金安,张 洁,胡志为,王 雷,王爱萍 (中国人民解放军第四五四医院,江苏南京210000)
·综述·
谷维素在糖尿病神经病变中的应用研究进展
孙新娟,陈金安,张 洁,胡志为,王 雷,王爱萍 (中国人民解放军第四五四医院,江苏南京210000)
糖尿病神经病变是糖尿病最常见、最复杂的慢性并发症之一,是造成糖尿病患者反复住院的主要原因.对糖尿病周围神经病变的治疗除积极控制血糖外,临床采用多种治疗方法改善患者的四肢感觉异常,缓解足部疼痛等.谷维素主要用于治疗植物神经功能失调,临床上也用于治疗糖尿病周围神经病变.本文对糖尿病神经病变的发病机制进行综述,并探讨谷维素在糖尿病神经病变中的应用前景,为糖尿病神经病变的临床治疗提供方向.
糖尿病神经病变;谷维素;机制
0 引言
糖尿病神经病变(diabetic neuropathy,DN)是糖尿病最常见、最复杂的慢性并发症之一,是造成糖尿病患者反复住院的主要原因.研究表明,在新诊断的糖尿病患者中,有10%的患者已经并发糖尿病神经病变,且随着糖尿病病程的延长,其发病率可达50%以上.对于糖尿病神经病变发病机制研究显示,氧化应激反应是导致糖尿病神经病变的中心环节.临床上对糖尿病周围神经病变的治疗除积极控制血糖外,临床采用多种治疗方法改善患者的四肢神经感觉异常,缓解足部疼痛等.研究表明,在新诊断的糖尿病患者中,有10%的患者已经兵法糖尿病神经病变,且随着糖尿病秉承的延长,其发病率可达50%以上.对于糖尿病神经病变发病机制研究显示,氧化应激反应是导致糖尿病神经病变的中心环节.临床上用于治疗植物神经功能失调,临床上也有报道用于治疗糖尿病周围神经病变.本文通对糖尿病神经病变的机制进行综述,并阐述谷维素在糖尿病神经病变中的应用前景,为糖尿病神经病变的临床治疗提供方向.
1 糖尿病神经病变
糖尿病神经病变是糖尿病患者表现出外周神经失调的症状或体征(排除其他原因),是糖尿病最常见的并发症,也是导致患者非创伤性截肢及死亡的重要原因.研究[1]表明,有10%的患者在诊断为糖尿病时即存在神经病变,在诊断糖尿病病程25年内有50%的患者并发神经病变.
2 糖尿病神经病变的发病机制
多种糖尿病实验模型均显示,氧化应激是导致神经损伤的主要原因[2-3].高血糖通过增加体内超氧负离子和过氧亚硝基阴离子等氧化应激分子导致糖尿病神经病变的神经损伤.研究表明:①高血糖引起感觉神经元发生线粒体依赖的凋亡[4-5];②高血糖诱导产生的氧化应激相关分子,通过影响激活核转录因子kappa B(nuclear factor kappa-light-chain-enhancer of activated B cell, NF-κB)、丝裂原激活蛋白激酶(mitogen activated protein kinases, MAPK)、前炎症因子及基因转录因子等信号通路导致神经损伤[6].氧化应激导致糖尿病神经病变的机制包括主要以下几个方面.
2.1 多元醇通路 生理情况下,大部分葡萄糖通过糖酵解途径转变成丙酮酸进入细胞内,仅有约3%的葡萄糖在醛糖还原酶的作用下通过多元醇通路转化成山梨醇[7].而高血糖状态,多达33%的葡萄糖通过多元醇通路代谢成山梨醇[8].该过程消耗大量的烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH),而使具有抗氧化作用的谷胱甘肽(glutathiome, GSH)产生减少[9-11].此外,山梨醇不能通过细胞膜,大量聚集在细胞外,高浓度的山梨醇消耗大量的肌醇[12]而影响神经元内的信号转导(肌醇主要通过磷酸肌醇形式进入细胞后参与神经元内的信号转导).
2.2 增加糖基化终末代谢产物 高血糖通过一系列的化学反应生成糖基化代谢产物(advanced glycation end products, AGEs).AGE 与其受体(receptor of advanced glycation end-product,RAGE)结合后调控下游信号转导[13]:①AGE-RAGE结合后会消耗大量的还原型GSH导致氧化应激反应[14];②AGE-RAGE结合能够减少神经元内的突触转运而降解神经元[15];③AGE-RAGE结合后,会导致NADPH氧化酶活化、NF-κB基因表达以及诱导前炎症因子的活化[16].这一系列的变化会影响神经元结构的稳定性,从而引起神经的功能缺陷.
2.3 葡萄糖的自我氧化作用 体内过多的葡萄糖通过烯二醇重构的方式形成烯二醇基,烯二醇基有如下作用:①影响分子氧形成超氧化物阴离子(参与糖尿病的发病分子);②直接修饰蛋白的赖氨酸及精氨酸残基,形成AGEs;③葡萄糖能产生·OH基团,该基团是一种强氧化剂,能够干扰DNA共价化合物而损伤细胞.
2.4 增加己糖通路 果糖-6-磷酸是糖酵解的中间代谢产物,当体内糖过量时,果糖-6-磷酸大量聚集后被己糖通路利用,而此时,果糖-6-磷酸转化成葡糖胺-6-磷酸[17].葡糖胺在细胞内能大量生成过氧化氢(H2O2)而增加氧化应激反应[18].葡糖胺-6-磷酸可以与尿嘧啶核苷酸(uridine triphosphate,UTP)结合形成UDPG1cNAc,UDPG1cNA能与蛋白分子中丝氨酸、苏氨酸残基结合,诱导产生TGF,TGF-β及PAI-1,而这些蛋白已证明涉及糖尿病神经病变的发病机制中[9,19].
2.5 PKC活化通路 磷酸二羟丙酮是糖酵解的又一中间代谢产物,当体内糖过量时,磷酸二羟丙酮大量聚集后形成甘油-3-磷酸,甘油-3-磷酸吸附脂肪酸后产生二酯酰甘油(diacylglycerol,DAG).DAG是蛋白激酶C(protein kinase C,PKC)最重要的激活因子.PKC信号通路激活参与糖尿病神经病变的发病及神经损伤过程,主要机制是信号级联反应,导致某些转录因子如NF-κB,前炎症因子如TGF,PAI等表达上调[20].PKC通路的激活同时又能诱导产生过多的ROS和AGEs而导致细胞的损害.目前研究[11]认为,PKC的激活对于糖尿病神经病变具有双重作用,当其活性低时,可以改变神经的传导作用;而当其活性高时,它可以影响神经化学物质的活性而破坏神经功能.
以上通路的异常导致神经元内的氧化及抗氧化失衡[21],从而出现营养神经的血流障碍,神经内膜缺氧,运动和感觉神经传导障碍,外周神经变性,增加振动觉和温度觉的阈值等糖尿病神经病变的临床表现.越来越多的研究[22]认为,氧化应激不仅是糖尿病的继发性表现,而且是糖尿病性神经病变的主要原因.因此,抗氧化可以作为糖尿病神经病变治疗的方向.
3 谷维素的抗氧化作用及机制
谷维素是从米糠油中提取出来的一种维生素类药物,其具有多种治疗活性,如降低胆固醇,调节垂体激素分泌,抑制胃酸分泌及血小板聚集等[17].研究[22]表明,谷维素具有抗氧化应激、降胆固醇、抗炎、抗肿瘤及调节糖代谢等作用.谷维素的抗氧化作用如下:①谷维素能够清除氧化不平衡的反应性产物.研究[22]显示,联合谷维素喂养高脂饮食的小鼠与单纯高脂饮食小鼠相比,含谷维素的小鼠体内的脂质过氧化作用降低,说明谷维素可以作为氧自由基的清除剂[23];②谷维素的代谢产物可以在体内诱导不同的抗氧化反应[24].
在细胞中有不同的抗氧化系统,其与所产生的活性氧簇(reactive oxygen species, ROS)相抗衡,其中包括多种抗氧化剂分子,如超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶[25]和谷胱甘肽[26-27].在鱼藤酮诱导的帕金森病(Parkinson's disease,PD)的果蝇模型中,谷维素能显著增加抗氧化酶(例如过氧化氢酶、超氧化物歧化酶和谷胱甘肽-S-转移酶)而发挥抗氧化防御作用,可以防止氧化应激和减弱线粒体功能障碍[28].
4 谷维素在糖尿病及神经病变中的应用
4.1 谷维素在糖尿病中的作用 氧化应激被认为是胰岛素抵抗,葡萄糖受损和糖尿病发展的关键因素[29].在高脂饮食联合谷维素喂养小鼠实验与单纯高脂饮食喂养相比,其糖耐量和胰岛素抵抗均有所改善[30],并且能显著的降低小鼠的血糖水平[24].
研究[30]表明胰岛细胞内质网应激与胰岛细胞损伤、凋亡及胰岛抵抗有关.口服谷维素后约1 h内其在胰腺中达到最大血浆浓度,并且能减少内质网应激反应基因的表达;结果显示口服谷维素后能有效促进胰岛细胞的胰岛素释放,从而发挥调节糖代谢的作用[32].
4.2 谷维素在糖尿病神经病变中的作用 临床上目前谷维素主要用来治疗植物神经功能失调、周期性精神病、脑震荡后遗症、更年期综合征、经前期紧张症、血管神经性头痛等.谷维素在糖尿病神经病变中治疗作用的理论基础主要基于改善抗氧化反应.研究显示:①每天每千克体质量充100 mg谷维素,可以有效的修复Na+-K+ATPase活性,从而发挥抗氧化应激的作用[33];②谷维素能够清除氧自由基,具有降低脂质过氧化的能力[34];③谷维素能够增加神经细胞内的GSH,达到清除氧自由基及抑制TNF-α活性的作用[35];④谷维素能够降低葡萄糖-6-磷酸脱氢酶的活性,从而促进NAPDH的表达,达到抗氧化应激的作用[36];⑤谷维素还可以通过减弱对线粒体的损害而达到保护抗氧化系统的作用[37];⑥陈建国等[38]研究显示,糖尿病神经病变患者服用谷维素后的疗效,症状改善的有效率达90%.
综上所述,糖尿病神经病变的发病机制与高血糖诱导的氧化应激密切相关,且过程较为复杂,涉及多元醇通路、己糖通路、PKC活化通路、葡萄糖的自我氧化作用等多条氧化应激通路.谷维素及其代谢产物具有抗氧化应激,清除氧自由基,调节糖代谢,改善胰岛素抵抗等多重作用,为其在糖尿病神经病变的治疗领域提供了理论基础.
[1] Pirart J.[Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973(3rd and last part) (author's transl)] [J].Diabete Metab,1977,3(4):245-256.
[2] Russell JW, Golovoy D, Vincent AM, et al.High glucose-induced oxidative stress and mitochondrial dysfunction in neurons[J].FASEB J,2002,16(13):1738-1748.
[3] CHarles M, EJskjaer N, WItte DR, et al.Prevalence of neuropathy and peripheral arterial disease and the impact of treatment in people with screen-detected type 2 diabetes:the Addition-Denmark study[J].Diabetes Care,2011,34(10):2244-2249.
[4] Kasznicki J, Kosmalski M, Sliwinsk AA, et al.Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy[J].Mol Biol Rep,2012,39(9):8669-8678.
[5] Kang X, Yang Z, Sheng J, et al.Oleanolic acid prevents cartilage degeneration in diabetic mice via PPARγ associated mitochondrial stabilization[J].Biochem Biophys Res Commun,2017,490(3):834-840.
[6] Negre-Salva YREA, Coatrieux C, Ingueneau C, et al.Advanced lipid peroxidation end products in oxidative damage to proteins.Potential role in diseases and therapeutic prospects for the inhibitors[J].Br J Pharmacol,2008,153(1):6-20.
[7] Morrison AD, Clements RSJr, Travis SB, et al.Glucose utilization by the polyol pathway in human erythrocytes[J].Biochem Biophys Res Commun,1970,40(1):199-205.
[8] Cheng HM, González RG.The effect of high glucose and oxidative stress on lens metabolism,aldose reductase,and senile cataractogenesis[J].Metab Clin Exp,1986,35(4 Suppl 1):10-14.
[9] Hosseini A, Abdollahi M.Diabetic neuropathy and oxidative stress:therapeutic perspectives[J].Oxid Med Cell Longev,2013,2013:1-15.
[10] Edwards JL, Vincent AM, Cheng HT, et al.Diabetic neuropathy:mechanisms to management[J].Pharmacol Ther,2008,120(1):1-34.
[11] Oyenihi AB,Ayeleso AO,Mukwevho E, et al.Antioxidant strategies in the management of diabetic neuropathy[J].Biomed Res Int,2015,2015:515042.
[12] Calcutt NA, Tomlinson DR, Biswas S.Coexistence of nerve conduction deficit with increased Na(+)-K(+)-ATPase activity in galactose-fed mice.Implications for polyol pathway and diabetic neuropathy[J].Diabetes,1990,39(6):663-666.
[13] Vincent AM, Perrone L, Sullivan KA, et al.Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress[J].Endocrinology,2007,148(2):548-558.
[14] Bansal S, Chawla D, Siddarth M, et al.A study on serum advanced glycation end products and its association with oxidative stress and paraoxonase activity in type 2 diabetic patients with vascular complications[J].Clin Biochem,2013,46(1-2):109-114.
[15] Kalousová M, Skrha J, Zima T.Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus[J].Physiol Res,2002,51(6):597-604.
[16] Graves DT,Liu R,Oates TW.Diabetes-enhanced inflammation and apoptosis: impact on periodontal pathosis[J].Periodontology 2000,2007,45:128-137.
[17] Ghatak SB, Panchal SJ.Investigation of the immunomodulatory potential of oryzanol isolated from crude rice bran oil in experimental animal models[J].Phytother Res,2012,26(11):1701-1708.
[18] Evans JL, Goldfine ID, Maddux BA, et al.Oxidative stress and stress-activated signaling pathways:a unifying hypothesis of type 2 diabetes[J].Endocr Rev,2002,23(5):599-622.
[19] Leinninger GM, Vincent AM, Feldman EL.The role of growth factors in diabetic peripheral neuropathy[J].J Peripher Nerv Syst,2004,9(1):26-53.
[20] Saad MI, Abdelkhalek TM, Saleh MM, et al.Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction:focus on oxidative stress and endothelial progenitor cells[J].Endocrine,2015,50(3):537-567.
[21] Kuhad A, Chopra K.Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy[J].Neuropharmacology,2009,57(4):456-462.
[22] Minatel IO, Francisqueti FV, Corrêa CR, et al.Antioxidant activity of gamma-oryzanol: a complex network of interactions[J].Int J Mol Sci,2016,17(8).
[23] Jin Son M, Wrico C, Hyun Nam S, et al.Influence of oryzanol and ferulic Acid on the lipid metabolism and antioxidative status in high fat-fed mice[J].J Clin Biochem Nutr,2010,46(2):150-156.
[24] Wang O, Liu J, Cheng Q, et al.Effects of ferulic acid and γ-oryzanolon high-fat and high-fructose diet-induced metabolic syndrome in rats[J].PLoS ONE,2015,10(2):e0118135.
[25] Kaynar H,Meral M,Turhan H,et al.Glutathione peroxidase,glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and nonsmall cell lung cancer[J].Cancer Letters,2005,227(2):133-139.
[26] Aoyama K, Nakaki T.Impaired glutathione synthesis in neurodegeneration[J].Int J Mol Sci,2013,14(10):21021-21044.
[27] Berndt C, Lillig CH, Flohé L.Redox regulation by glutathione needs enzymes[J].Front Pharmacol,2014,5:168.
[28] Araujo SM, De Paula MT, Poetini MR,et al.Effectiveness of γ-oryzanol in reducing neuromotor deficits,dopamine depletion and oxidative stress in a Drosophila melanogaster model of Parkinson's disease induced by rotenone[J].Neurotoxicology,2015,51:96-105.
[29] Kozuka C, Yabiku K, Takayama C, et al.Natural food science based novel approach toward prevention and treatment of obesity and type 2 diabetes:recent studies on brown rice and γ-oryzanol[ J].Obes Res Clin Pract,2013,7(3):e165-e172.
[30] Kozuka C, Yabiku K, Sunagawa S, et al.Brown rice and its component, γ-oryzanol, attenuate the preference for high-fat diet by decreasing hypothalamic endoplasmic reticulum stress in mice[J].Diabetes,2012,61(12):3084-3093.
[31] Salvadó L, Palomer X, Barroso E, et al.Targeting endoplasmic reticulum stress in insulin resistance[J].Trends Endocrinol Metab,2015,26(8):438-448.
[32] Kozuka C, Sunagawa S, Ueda R, et al.γ-Oryzanol protects pancreatic β-cells against endoplasmic reticulum stress in male mice[J].Endocrinology,2015,156(4):1242-1250.
[33] Son MJ, Rico CW, Nam SH, et al.Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet[J].J Food Sci,2011,76(1):H7-H10.
[34] Parrado J, Miramontes E, Jover M, et al.Prevention of brain protein and lipid oxidation elicited by a water-soluble oryzanol enzymatic extract derived from rice bran[J].Eur J Nutr,2003,42(6):307-314.
[35] Islam MS, Murata T, Fujisawa M, et al.Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice[J].Br J Pharmacol,2008,154(4):812-824.
[36] Moriartey S, Temelli F, Vasanthan T.Effect of storage conditions on the solubility and viscosity of β-glucan extracted from bread under in vitro conditions[J].J Food Sci,2011,76(1):C1-C7.
[37] Madar Z.Effect of brown rice and soybean dietary fiber on the control of glucose and lipid metabolism in diabetic rats[J].Am J Clin Nutr,1983,38(3):388-393.
[38]陈建国.谷维素治疗糖尿病周围神经病变41例疗效观察[J].中国厂矿医学,1995(6):373-375.
Research progress of oryzanol in diabetic neuropathy
SUN Xin-Juan, CHEN Jin-An, ZHANG Jie, HU Zhi-Wei, WANG Lei,WANG Ai-Ping
The 454th Hospital of PLA,Nanjing 210000,China
Diabetic neuropathy is one of the most common and most complicated chronic complications of diabetes,and is the main cause of repeated hospitalization in diabetic patients.Besides control of blood sugar,variety of treatment methods are adopted to improve acroparesthesia of patients, relieve foot pain and so on.Oryzanol is mainly used to treat autonomic dysfunction,and also used to treat diabetic peripheral neuropathy.In this paper, the pathogenesis of diabetic neuropathy is reviewed,and the application prospect of oryzanol in diabetic neuropathy is discussed,which provides direction for treating diabetic neuropathy.
diabetic neuropathy; oryzanol; mechanism
R587.1
A
2095-6894(2017)11-65-03
2017-01-11;接受日期:2017-01-26
2014军区重大课题(10Z14)
孙新娟.博士,主治医师.研究方向:糖尿病足病的预防和治疗.E-mail:27966509@ qq.com
王爱萍.博士,主任医师.研究方向:糖尿病足病的综合性治疗.E-mail:27966509@ qq.com