APP下载

新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨

2017-01-04陈继平罗婷王晖廖群安张雄华陈恩科王杰杰孟秦宇柳小明

西北地质 2016年4期
关键词:土墩辉长岩铁质

陈继平,罗婷,王晖,廖群安,张雄华,陈恩科,王杰杰,孟秦宇,柳小明

(1.陕西省地质调查中心,陕西 西安 710068;2.中国地质大学(武汉)地球科学学院,湖北 武汉 430074 ;3.西北大学大陆动力学国家重点实验室,陕西 西安 710069)



新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨

陈继平1,罗婷1,王晖1,廖群安2,张雄华2,陈恩科1,王杰杰1,孟秦宇1,柳小明3

(1.陕西省地质调查中心,陕西 西安 710068;2.中国地质大学(武汉)地球科学学院,湖北 武汉 430074 ;3.西北大学大陆动力学国家重点实验室,陕西 西安 710069)

黄山东、香山及土墩岩体均为多阶段侵入的杂岩体,岩体与围岩为侵入接触关系,显示热侵位特征。岩石组成单元主要为超镁铁质橄榄岩和镁铁质辉长岩。岩石化学组成以拉斑玄武岩系列为主,存在部分钙碱性系列和碱性系列。稀土元素具平坦的分配型式或轻稀土略富集的分配型式。锆石Hf同位素指示岩石来源于亏损型地幔源区。黄山东、香山及土墩镁铁-超镁铁岩不是俯冲洋壳的残余或者岛弧环境的阿拉斯加型岩体,而是来源于亏损型地幔源区的岩浆底侵形成。

镁铁-超镁铁岩;锆石;Hf同位素;源区性质;东天山

产出于造山带的镁铁-超镁铁质岩能够为其演化历史提供重要的信息,蛇绿岩带中的镁铁-超镁铁质岩是识别板块缝合区的重要标志(DILEK, 2003;SENGÖR et al., 2004;ROBINSON et al., 2008;PEARCE et al., 2010),且在许多蛇绿岩带中镁铁-超镁铁质岩赋存有豆荚状铬铁矿床(NALDRETT et al.,1989;ZHOU et al.,1996;ZHANG et al., 2008;SHI et al., 2012),但对于那些产于造山带中与蛇绿岩无关的镁铁-超镁铁质岩,它们源于上地幔(HIMMELBERG et al., 1995;KUSKY et al., 2007;PIRAJNO et al., 2008;SANTOSH et al., 2009;AO et al., 2010;CAI et al., 2012)可以作为认识深部地质作用,地幔矿物组成的探针对于探讨地幔演化过程、岩浆成因、壳幔岩浆作用以及大陆动力学等方面具有重要的指示意义。

黄山-镜尔泉岩带位于康古尔断裂与雅满苏断裂之间(图1),受觉罗塔格造山带-康古尔韧性剪切带控制,该岩带发现最早,研究程度最高,杂岩体数量最多,西起恰特卡尔塔格、东至镜尔泉地区的图拉尔根,大大小小约二十几个,岩体规模均不大,露头面积最大者不足10 km2,最小者只有几平方米,地表形态呈近等轴状或透镜状。由于该岩带产有重要的铜镍矿,因此吸引了许多地质学家对其进行研究,积累了丰富的资料,但仍存在争议:部分被认为是洋壳俯冲的残余(白云来,1993;朱文斌等,1996)、部分被认为产于碰撞后伸展环境(PIRAJNO et al., 2008;ZHOU et al., 2004)、或者是产于与俯冲有关的岛弧环境(AO et al., 2010;郭继春等,1992)。因此,弄清楚这些岩体的成因及构造环境对于理解造山运动的机制以及增生造山带的构造演化具有重要意义。笔者选取了黄山东、香山、土墩3个代表性岩体作为研究对象,通过岩石地球化学及锆石同位素数据分析,讨论岩浆源区及其形成的构造背景,得出岩石成因。

①.康古尔断裂;②.雅满苏断裂;③.阿奇克库都克断裂;④.红柳河断裂;⑤.黄山-镜尔泉镁铁-超镁铁质岩带;⑥.白石泉镁铁-超镁铁质岩带;⑦.城北镁铁-超镁铁质岩带图1 东天山及北山裂谷带镁铁-超镁铁质杂岩体分布图(据SU et al., 2011修改)Fig.1 The distribution of mafic-ultramafic complexes in the Eastern Tianshan and Beishan rift zone(After SU et al., 2011)

1 岩体地质地球化学特征概述

黄山岩带包含黄山东、黄山、香山、黄山南及西边的土墩岩体,香山断裂(F8)、黄山断裂(F9)以及干洞断裂(F12)从岩体附近穿过,由于其长期活动,出现了一些派生小断裂,控制了岩体的形态与产状。岩体侵入的地层为上石炭统梧桐窝子组及下石炭统干墩组(图2),与围岩接触带局部可见围岩捕虏体和岩脉穿插围岩的现象(王润民等,1987),而围岩普遍受到热接触变质而角岩化(张耀华,1987),接触带可见石榴子石等热接触变质矿物及重结晶矿物,显示热侵位特征(GU et al., 1995)。 梧桐窝子组为一套海相火山岩、火山碎屑岩-正常碎屑岩沉积*张兴龙,李文铅,李松龄,等.1∶25万五堡幅区调报告, 2004.;干墩组为一套深灰色-灰黑色浅变质的硅质岩、凝灰岩及少量的基性火山岩(蔡土赐,1999)。区内华力西期不同侵入次闪长岩体和花岗岩体与镁铁-超镁铁质岩体密切伴生,部分岩体直接侵入到镁铁-超镁铁质岩中。

1.第四系;2.上石炭统梧桐窝子组;3.下石炭统干墩组;4.华力西期花岗岩;5.闪长岩;6.基性-超基性岩;7.铜镍矿图2 黄山一带区域地质图(底图引自董连慧等,2011*董连慧,等.覆盖区矿产预测与示范验证天山区委托业务实施方案, 2010.)Fig.2 Geological map of the Huangshan area(After DONG et al., 2011)

黄山东、香山与土墩岩体岩石组合差异不大,超镁铁质橄榄岩(堆晶二辉橄榄岩、单辉(方辉)橄榄岩)和镁铁质辉长岩均有产出。镁铁质岩为角闪辉长岩,但3个岩体角闪辉长岩的角闪石含量差异很大。香山角闪辉长岩中角闪石含量可达35%,黄山东与土墩岩体角闪辉长岩中角闪石含量均小于10%。角闪辉长岩中斜长石基本上为拉长石(An52~An60),部分为中长石(An43~An44),中长石出现在含矿辉绿岩或含矿角闪辉长岩中。岩体中辉石有斜方辉石和单斜辉石2类,以单斜辉石为主,产于超镁铁质单辉橄榄岩中或镁铁质角闪辉长岩中的为普通辉石或透辉石;斜方辉石多产于超镁铁质岩中,为紫苏辉石(黄山东、香山岩体)或古铜辉石、易变辉石(土墩岩体)。

在SiO2-(Na2O+K2O)图解中,土墩镁铁-超镁铁质岩均落入亚碱性系列范围,样品为橄榄岩成分或辉长岩成分,黄山东镁铁-超镁铁质岩中辉长岩(D010)落入碱性系列,其余样品为亚碱性系列,香山镁铁-超镁铁质岩中有2个辉长岩和一个辉绿岩样品为碱性系列,其余样品为亚碱性系列。笔者将属于亚碱性系列的黄山东、香山及土墩镁铁-超镁铁质岩进行AFM图解和SiO2-TFeO/MgO图解投点,黄山东、香山及土墩镁铁-超镁铁质岩具有钙碱性和拉斑系列之分,但以拉斑系列为主(图3)。ACM图解中超镁铁质岩均属于堆晶成因。

球粒陨石标准化稀土元素配分曲线为平坦型(土墩、香山岩体)或轻稀土略富集型(黄山东岩体),原始地幔标准化微量元素特征表现为相对富集大离子亲石元素(K、Sr、Ba、U), 相对亏损高场强元素(Nb、Ta、P、Ti)及 Th,适度亏损Zr、Hf(陈继平等,2013)。

2 锆石样品来源及测试方法

锆石原位Lu-Hf同位素微区测定在中国地质大学(武汉)地质过程与矿产资源国家重点实验室中完成,采用Neptune Plus MC-ICP-MS系统在锆石U-Pb定年分析的同一位置上进行。测试的激光束直径为44 μm,使用91500、GJ-1和Monastery作为锆石标样检测分析数据,每完成8个锆石点的测定,加测GJ-1和Monastery一次,实验过程中,91500和GJ-1的176Hf/177Hf测定结果分别为0.282 294±0.000 008(1σ,n=6)、0.281 992±0.000 008(1σ,n=9),详细分析方法及参数参考YUAN et al(YUAN et al., 2008)。

MC.镁铁质堆晶岩;UC.超镁铁质堆晶岩;UMC.镁铁-超镁铁质堆晶岩图3 (a)SiO2-(Na2O+K2O)岩石分类图解(据MIDDLEMOST et al., 1994)、(b)SiO2-TFeO/MgO图解(据MIYASHIRO A.,1974)、(c)ACM图解(据COLEMAN et al., 1977)和(d)AFM岩石系列判别图解(据IRVINE et al.,1971 和COLEMAN.,1977)Fig.3 (a)Rock classification plots of SiO2 vs. (Na2O+K2O)(After MIDDLEMOST., 1994), (b)SiO2 vs. TFeO/MgO(After MIYASHIRO.,1974),(c)ACM diagram(After COLEMAN., 1977), (d)AFM diagram(After IRVINE et al.,1971 and COLEMAN.,1977)

3 测试结果

黄山东、香山及土墩角闪辉长岩锆石用LA-ICP-MS进行测试分析,测试样品均新鲜,无蚀变。所测锆石呈半自形-自形,短柱状、 长柱状居多,少数为不规则的粒状,阴极发光图像显示多数锆石具有较宽的结晶环带,为典型的岩浆锆石。测试结果显示黄山东岩体结晶年龄为(276.9±1.3)Ma,香山岩体结晶年龄为(285.6±0.89)Ma,土墩岩体结晶年龄为(298.37±0.94)Ma(图4)。

图4 锆石阴极发光图像(实圈为锆石年龄测试点,虚线圈为锆石Hf同位素分析点)及锆石U-Pb谐和图Fig.4 CL images of zircons and zircon U-Pb concordia diagrams

黄山东角闪辉长岩D003-1号样品、香山角闪辉长岩XS1-1号样品及土墩角闪辉长岩TD1-1号样品锆石原位Hf同位素分析结果如表1所示,D003-1样品14颗锆石的176Hf/177Hf初始值为0.282 970~0.283 029,加权平均值为0.283 003,εHf(t)变化于13.068 304~15.218 292;香山XS1-1中16颗锆石初始值变化范围较窄((176Hf/177Hf)i=0.282 921~0.282 988,Mean=0.282 962),εHf(t)变化于11.540 684~13.910 124;土墩角闪辉长岩TD1-1样品9颗锆石的176Hf/177Hf初始值变化于0.282 969~0.283 022,均值为0.282 990,εHf(t)变化于13.541 364~15.418 109。

黄山东、香山及土墩辉长岩锆石Hf同位素组成图解中(图5),测点位于亏损地幔演化线附近,离球粒陨石演化线较远,暗示锆石源于较球粒陨石的εHf(t)值强分异的亏损型地幔源区。

黄山东、香山及土墩辉长岩锆石εHf(t)存在差异,黄山东及土墩εHf(t)变化区间较为一致,而香山εHf(t)则相对较小,说明三者岩浆源区亏损程度不一致,黄山东及土墩锆石来源于比香山锆石更亏损的地幔源区。

图5 锆石Hf同位素组成图解Fig.5 Zircon Hf isotopic diagrams

笔者对黄山东、香山及土墩角闪辉长岩锆石用LA-ICP-MS进行分析,在锆石原位进行Lu-Hf同位素微区测定。三者εHf(t)值较高,均大于11,表明岩浆中幔源物质贡献巨大。黄山东岩体结晶年龄为276.9 Ma, TDM1变化于309~392 Ma,二者相差82~174 Ma;香山岩体结晶年龄为285 Ma,TDM1变化于367~458 Ma,二者相差30~116 Ma;土墩岩体结晶年龄为298.3 Ma, TDM1变化于319~395 Ma,二者相差20~97 Ma。其TDM1年龄均与岩体结晶年龄相近,稍大于岩浆结晶年龄,表明它们来源于亏损地幔,受到过地壳物质的混染(吴福元等,2007)。香山、土墩及黄山东锆石TDM1年龄峰值分别365 Ma、360 Ma、325 Ma,其岩浆从地幔熔融的时间均在早石炭世,暗示了早石炭世黄山地区存在重要的地质事件,可能与天山洋的俯冲存在关联,天山及邻区下石炭统火山岩系与下伏地层之间呈不整合接触,且呈区域性、分布广泛(夏林圻等,2002),暗示天山洋在早石炭世闭合,可能大于320 Ma。

4 源区性质讨论

黄山东、香山及土墩岩体岩石的锆石Hf同位素指示其来源于亏损的地幔源区。稀土元素分配型式为平坦型(香山及土墩岩体)或轻稀土略富集的分配型式(黄山东岩体),与由软流圈产生的大陆玄武岩特征相似(夏林圻等,2007),在εNd(t)-(87Sr/86Sr)i图解中,样品位于OIB和MORB区域(图6),指示其源区以软流圈物质为主导。黄山东、香山及土墩岩体镁铁质岩各岩相中含有5%~35%的岩浆结晶角闪石,说明岩浆源区存在富水特征。岩石化学组成上以拉斑玄武岩系列为主,同时存在部分钙碱性系列和碱性系列,样品总体表现为相对富集大离子亲石元素K、Sr、Ba,有较明显的Nb、Ta亏损及弱Ti负异常,指示其地幔源区经历了俯冲事件的交代作用(IONOV et al.,1995),交代流体主要富集大离子亲石元素,而亏损高场强元素。洋壳俯冲过程中产生的流体相会将活动性强的元素带入上覆地幔楔,而亏损高场强元素(Nb、Ta、Ti),从而使分配系数相近的一些不相容元素比值发生变化,La/Nb、Ba/Na值升高、Nb/Th降低等。在La/Nb-La/Ba图解中,样品点多数显示此特征,位于受俯冲改造的岩石圈地幔区域。夏明哲等(2010)利用Sr-Nd同位素模拟黄山东岩体地幔源区特征,认为存在约10%的EMII型富集地幔加入到了亏损型地幔源区(夏明哲等,2010)。因此,黄山东、香山及土墩岩体的岩浆源区以软流圈为主导,存在部分受俯冲改造的岩石圈地幔组分。

图6 镁铁质-超镁铁质杂岩岩浆源区判别图解(Sr-Nd同位素:黄山东引自夏明哲等,2010,香山数据引自TANG et al., 2013)Fig.6 Discriminative diagrams of Magma source(Sr-Nd isotope:Huangshandong data from XIA et al., 2010,Xiangshan data from TANG et al., 2013)

5 结论

本次研究确定的黄山东岩体锆石U-Pb年龄为(276.9±1.3) Ma,香山岩体U-Pb年龄为(285.6±0.89) Ma,土墩岩体U-Pb年龄(298.37±0.94) Ma,说明本区镁铁-超镁铁岩带形成于二叠纪。结合锆石Lu-Hf同位素测定数据计算,黄山东岩体锆石εHf(t)值为13.06~15.21;香山岩体锆石εHf(t)值为11.54~13.91;土墩岩体锆石εHf(t)值为13.54~15.42。笔者认为本区镁铁-超镁铁岩有关岩浆起源于亏损型地幔源区,与前人Sr-Nd同位素研究结果基本吻合。

白云来. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 2000, 9(2): 1-7.

BAI Yunlai. Geotectonic settings of Huangshan-Jingerquan Nickel-Copper metallogenic system in Hami, Xinjiang[J]. Acta Geologica Gansu, 2000, 9(2): 1-7.

朱文斌, 马瑞士, 王赐银. 论新疆东部黄山-镜儿泉杂岩带的构造属性[J]. 地质科学, 1996, 31(1): 22-32.

ZHU Wenbin, MA Ruishi, WANG Ciyin. Tectonic attribute of Huangshan-Jingerquan complex in Eastern Xinjiang, China[J]. Sceentia Geologica Sinica, 1996, 31(1): 22-32.

郭继春, 胡受奚, 顾连兴, 等. 东天山 (E85-90) 加里东沟-弧-盆褶皱系的地质特征及其构造演化[J]. 南京大学学报 (自然科学版), 1992, 28(3): 431-438.

GUO Jichun, HU Shouxi, GU Lianxing, et al. Geological features and tectontc evolution East TianshanCaledonian trench-arc-basin foldbelt[J]. Journal of NanJing University(Natural Sciences Edition), 1992, 28(3): 431-438.

王润民, 李楚思. 新疆哈密黄山东铜镍硫化物矿床成岩成矿的物理化学条件[J]. 成都地质学院学报, 1987, 14(3): 1-9.

WANG Runmin, LI Chusi. Physicochemicalcondition of rock formation and mineralization of Huangshandong magmatogenic sulfide deposit HaMi, Xinjiang, China[J]. Journal of Chengdu College of Geology, 1987, 14(3): 1-9(in Chinese with English abstract).

张耀华. 新疆黄山东基性-超基性杂岩体地质特征及其含矿性[J]. 西北地质, 1987, (4): 15-31.

蔡土赐. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国地质大学(武汉)出版社, 1999: 1-430.

陈继平,廖群安,张雄华,等. 东天山地区黄山东与香山镁铁-超镁铁质杂岩体对比[J].地球科学,2013, 38(6):1-14.

CHEN Jiping, LIAO Qunan, ZHANG Xionghua, et al. Contrast of Huangshandong and Xiangshan Mafic-Ultramafic complex, East Tianshan[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6):1-14(in Chinese with English abstract).

刘民武. 中国几个镍矿床的地球化学比较研究[D]. 西安:西北大学, 2003.

LIU Minwu. Geochemical comparison of several nickel deposits in China[D]. Xi’an:Northwest University, 2003(in Chinese with English abstract).

张魁武, 沈步明, 李达周, 等. 阿拉斯加型超镁铁质岩的岩石化学特征[J]. 地质论评, 1988, 34(3): 377-382.

顾连兴, 诸建林, 郭继春, 等. 造山带环境中的东疆型镁铁-超镁铁杂岩[J]. 岩石学报, 1994, 10(4): 356-399.

GU Lianxing, ZHU Jianlin, GUO Jichun, et al. The East Xinjiang-type Mafic-Ultramafic complexes in orogenic environments[J]. Acta Petrologica Sinica, 1994, 10(4): 356-399(in Chinese with English abstract).

吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220.

WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology [J]. Acta Petrologica Sinica, 2007, 23(2):185-220(in Chinese with English abstract).

夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启、闭合时限的岩石学约束-来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 2002, 21(2): 55-62.

XIA Linqi, ZHANG Guowei, XIA Zuchun, et al. Constraints on the timing of opening and closing of the Tianshan Paleozonic oceanic basin : ecvidence from Sinina and Carboniferous volcanic rocks[J]. Geological Bulietin of China, 2002, 21(2): 55-62(in Chinese with English abstract).

夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-89.

XIA Linqi, XIA Zuchun, XU Xueyi, et al. The discrimination between continental basalt and islanf arc basalt based on geochemical method[J]. Acta Petroligical et Mineralogica, 2007, 26(1): 77-89(in Chinese with English abstract).

夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 26(8): 2413-2430.

XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(8): 2413-2430(in Chinese with English abstract).

唐俊华, 顾连兴, 张遵忠, 等. 东天山黄山-镜儿泉过铝花岗岩矿物学, 地球化学及年代学研究[J]. 岩石学报, 2008, 24(5): 921-946.

TANG Junhua, GU Lianxin, ZHANG Zunzhong, et al. Peralumious granite in Huangshan-Jingerquan area of eastern Tianshan : Geochemistry, mineralogy and geochronology[J]. Acta Petrologica Sinica, 2008, 24(5): 921-946(in Chinese with English abstract).

DILEK Y. Ophiolite concept and its evolution. In: Dilek Y, Newcomb S. (Eds.)[J]. Ophiolite concept and the evolution of geological thought: Geological Society of America Special Papers. 2003: 1-16.

SENGÖR AC, NATAL’IN BA. Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags[J]. Developments in Precambrian Geology, 2004, 13(1): 675-726.

ROBINSON PT, ZHOU MF. The origin and tectonic setting of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 301-307.

PEARCE JA, ROBINSON PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting [J]. Gondwana Research, 2010, 18(1): 60-81.

NALDRETT AJ, VON Gruenewaldt G. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes[J]. Economic Geology, 1989, 84(1): 180-187.

ZHOU MF, ROBINSON PT, MALPAS J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21.

ZHANG Q, WANG CY, LIU DY, et al. A brief review of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 308-324.

SHI R, GRIFFIN W L, O’’REILLY S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.

HIMMELBERG GR, LONEY RA. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[M]. Washington: United States Government Printing Office, 1995:1-47.

KUSKY TM, GLASS A, TUCKER R. Structure, Cr-chemistry, and age of the Border Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex. In: Ridgway KD, Trop JM, Glen JM G, O’Neill JM.(Eds.), Tectonic growth of a collision continental margin: crustal evolution of Southern Alaska: Geological Society of America Special Papers, 2007, 431: 207-225.

PIRAJNO F, MAO JW, ZHANG ZH, et al. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183.

SANTOSH M, MARUYAMA S, YAMAMOTO S. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere[J]. Gondwana Research, 2009, 15(3): 324-341.

AO SJ, XIAO WJ, HAN CM, et al. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 18(2): 466-478.

CAI KD, SUN M, YUAN C, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294(295): 26-41.

SU BX, QIN K Z, SAKYA P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2): 516-531.

ZHOU MF, MICHAEL LESHER C, YANG ZX, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3): 233-257.

GU L X, ZHU JL, GUO JC, et al. Geology and genesis of the mafic-ultramafic complexes in the Huangshan-Jingerquan (HJ) belt, East Xinjiang[J]. Chinese Journal of Geochemistry, 1995, 14(2): 97-116.

YUAN HL, GAO S, DAI MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1): 100-118.

MCDONOUGH WF, SUN SS. The composition of the Earth[J]. Chemical Geology, 1995, 120(3): 223-253.

FREY FA, PRINZ M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38(1): 129-176.

MIDDLEMOST E AK. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224.

MIYASHIOR A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355.

COLEMAN RG, Ophiolites: ancient oceanic lithosphere[M]. Berlin: Springer-Verlag Berlin, 1977: 1-230.

IRVINE T, BARAGAR W. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.

SUN SS, MCDONGOUGH WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

SUN SS. Chemical composition and origin of the Earth’s primitive mantle[J]. Geochimica et Cosmochimica Acta, 1982, 46(2): 179-192.

BLICHERT-TOFT J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1): 243-258.

GRIFFIN WL, PEARSON NJ, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

AMELIN Y, LEE D, HALLIDAY AN, et al. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399(6733): 252-255.

SöDERLUND U, PATCHETT PJ, VERVOORT JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3): 311-324.

IONOV DA, HOFMANN AW. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3): 341-356.

TANG DM, QIN KZ, SU BX, et al. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 2(13):144-163

SYLVESTER PJ. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang

CHEN Jiping1, LUO Ting1, WANG Hui1, LIAO Qun’an2, ZHANG Xionghua2,CHEN Enke1, WANG Jiejie1, MENG Qinyu1, LIU Xiaoming3

(1.Shaanxi Center of Geological Survey, Xi’an 710068, Shaanxi, China; 2.School of Earth Sciences,China University of Geosciences, Wuhan 430074, Hubei, China; 3.State Key Laboratory of Continental Dynamics, Northwest University,Xi’an 710069, Shaanxi, China)

Huangshandong, Xiangshan and Tudun plutons are multiple-phase intrusive complexs, which show clear intrusive contact boundaries with wall rock. These intrusions are mainly composed of peridotite and gabbro. Peridotite has orthopyroxene or plagioclase, while clinopyroxene is augite or diopside. The Huangshandong, Xiangshan and Tudun plutons are mainly tholeiitic in composition, and some of them show calc-alkaline and alkaline characteristics. Chondrite-normalized rare earth element patterns show flat feature or slight enrichment in LREE. Zircon Hf isotopic compositions indicate that the Huangshandong, Xiangshan and Tudun intrusive complexes are derived from the depleted mantle source.Huangshandong, Xiangshan and Tudun plutons are not the remnants of subducted oceanic crust or Alaska-type rocks, but they are formed by the underplating of depleted mantle source.

mafic-ultramafic rocks; zircon; Hf isotope; source characteristics;eastern Tianshan

2016-03-02;

2016-05-03

中国地质调查局地质调查工作项目(1212011085469)

陈继平(1987-),工程师,从事岩石地球化学方面的研究工作。E-mail: dddxycjp@163.com

P597.3

A

1009-6248(2016)04-0051-11

猜你喜欢

土墩辉长岩铁质
武夷山的岩茶上好品质竟与石材中的铁质有关
中祁连西段肃北白石头沟辉长岩年代学、地球化学特征及地质意义
攀枝花铁矿床浅色辉长岩墙的成因及其地质意义
赣东北樟树墩-西湾蛇绿混杂岩中辉长岩和玄武岩年代学、地球化学特征及地质意义
准噶尔北部科克森套蛇绿岩中辉长岩年代学、岩石化学特征及地质意义
白蚁建造的神秘“金字塔”
白蚁建造的神秘“金字塔”
甜甜的柿子
铁太多与妊娠糖尿病有关
铁太多与妊娠糖尿病有关