APP下载

玉米耐受盐胁迫的调控机理研究进展

2016-12-17孙验玲徐远超李帅

山东农业科学 2016年11期
关键词:耐盐性玉米

孙验玲+徐远超+李帅

摘要:盐胁迫是影响玉米生长和产量的一个重要环境限制因素。盐胁迫易引发离子胁迫和渗透胁迫,最终导致植物叶面积扩展受阻、光合作用以及生物量积累降低等。植物在适应盐胁迫环境时能形成许多耐受调节机理,如Na+的外排、Na+区隔化进入液泡、可溶性物质的积累和活性氧(reactive oxygen species,ROS)的清除等。本文对近年来玉米耐盐机理的研究进展作一概述,内容包括盐胁迫对玉米生长和发育的影响,玉米对盐胁迫的生理生化响应及分子机制,基于离子平衡、渗透调节、清除活性氧和激素调节 4 个方面的玉米耐受盐胁迫的调控机理,并对玉米耐盐研究存在的问题和前景进行了分析和展望。深入研究玉米耐盐生理和分子机制,不仅具有重要的科学意义,而且还能为将来玉米的耐盐育种提供重要的理论指导。

关键词:玉米;耐盐性;耐盐生理响应;耐盐分子调控机制

中图分类号:S513.01 文献标识号:A 文章编号:1001-4942(2016)11-0157-07

Abstract Salinity stress is one of the most serious environmental constraints to maize growth and productivity. It causes ionic and osmotic stresses, and finally inhibits leaf expansion, restricts photosynthesis and limits the accumulation of biomass. In response to salinity stress, plants have employed many adaptive strategies, such as the active exclusion of sodium ions (Na+) and/or their sequestration into the vacuole, the accumulation of soluble substances and the scavenge of reactive oxygen species (ROS). The research advances of maize salt tolerance in recent years were discussed in this paper, including the effects of salt stress on maize growth and development, the physiological, biochemical and molecular mechanisms of maize salt tolerance. Among them, ion homeostasis, osmoregulation, scavenge of ROS and phytohormone regulation were especially summarized about their regulation roles on adaptation to salt stress in maize. In addition, some problems and suggestions for the research of maize salt tolerance were provided. Understanding the physiological and molecular mechanisms of maize salt tolerance not only had important scientific significance, but also could provide important theoretical guidance for maize salt resistant breeding in the future.

Keywords Maize; Salt tolerance; Physiological response of salt tolerance; Molecular mechanism of salt tolerance

土壤盐渍化是造成农作物减产的重要环境限制因素之一。据统计,全球约有20%的农业耕地遭受盐渍化的侵蚀,预计到2050年,有超过50%的耕地将被盐渍化。我国有3 600×104 hm2的盐渍地,其中有660×104 hm2是耕地,占全国耕地面积的6.62%,主要集中分布在东北、华北、西北地区和长江以北等粮食主产区[1]。近年来,我国耕地由于灌溉和施肥不当引起的次生盐渍化问题日益严重,总盐渍土面积不断扩大,对农业生产的影响逐年加重。因此,盐渍地综合利用与防治成为科研的热点,其中选育抗盐或耐盐的农作物品种是最经济有效的措施之一[2]。

玉米(Zea mays L.)既是重要的粮食和饲料作物,又是重要的工业原料。随着现代化工业进程的加快,目前市场上玉米的需求量日益增大,提高玉米的综合生产力亟待解决。玉米的耐盐性相对较差[3,4],其中苗期是整个生长周期的关键时期,该时期对各种外界不利环境因素的胁迫比较敏感,盐胁迫使玉米幼苗芽势弱,胚根少且短,苗弱,成活率低,严重影响其后期生长发育及产量[5]。因此,对玉米苗期等关键生长期耐受盐胁迫的调控机理研究不仅具有重要的科学意义,同时也为培育耐盐品种、提高玉米耐盐性和产量以及充分发挥盐渍土的生产潜力提供理论依据。

1 盐胁迫对玉米生长发育的影响

玉米对盐胁迫较为敏感,其极限盐度为 170 mmol/L(在一定盐浓度下,50%的植物能正常生长,超过该浓度时,则50%以上的植物生长受阻,产量降低,这一盐浓度称为该植物的极限盐度),每超过极限盐度 10 mmol/L,玉米产量降低12%[6]。100 mmol/L NaCl的盐胁迫可使根茎生长的受抑制程度分别达20%和50% 以上[7];250 mmol/L NaCl可导致玉米的生长严重受阻,枯萎死亡[8],由此可见,玉米的耐盐能力较低。玉米遭受盐胁迫时,其PSⅠ和PSⅡ遭到破坏,尤其是PSⅡ,其幼苗的净光合速率下降,细胞间隙CO2浓度升高,气孔导度降低[9]。另外,盐胁迫抑制玉米对氮、钾、钙、锰和铁等矿质元素的吸收和转运,严重阻碍其正常生长和发育[10-17]。研究表明,玉米受到盐胁迫后,植株干物质积累速度变慢,干物质下降,叶面积停止增加,黄叶指数增大,根变短变粗,节根条数增多,侧根及根毛减少,叶、茎和根的鲜重及干重降低[18,19]。

盐胁迫诱发离子胁迫和渗透胁迫,直接伤害玉米植株,进而影响植株体内各种生理活动。Na+的过度积累影响对K+的吸收,进而打乱气孔运动的正常节律,导致水分严重缺失,以致玉米枯萎死亡[16, 20,21]。研究表明,NaCl胁迫使玉米幼苗的Na+浓度急剧升高,尤其是在根部[22]。随着NaCl浓度的增大,地上部和根部的Na+、Cl-含量增加,而K+含量降低[23],抗盐性高的玉米品种有明显高的 K+/Na+比率[24]。另外,随NaCl浓度升高,玉米体内Ca2+含量急剧降低[25],生长受到抑制,这可能是因为过量的Na+竞争取代了细胞膜上结合的Ca2+,进而引发质膜渗漏和细胞损伤[26]。而Ca2+的加入明显减轻玉米的盐胁迫伤害,这可能与Ca2+能降低盐胁迫引发的气孔关闭、光合作用得到改善有关[27]。另外,盐胁迫还可诱导玉米体内活性氧过度积累,引发氧化损伤[28]。

总之,玉米遭受盐胁迫的伤害是多方面的,但最终都是质膜受损,细胞内离子稳态被破坏,代谢紊乱失衡。

2 玉米耐盐的生理生化基础

植物在适应盐胁迫环境时可形成许多耐受调节机理,如离子稳态的调节、有机渗透物质的积累和活性氧(reactive oxygen species,ROS)的清除等[29-31]。

2.1 离子平衡的调控

在盐胁迫下,高浓度的Na+严重阻碍作物对K+和Ca2+的吸收和运输。高浓度Na+可竞争抑制细胞膜上的Ca2+结合,破坏质膜透性,细胞内Na+急剧增加,而K+大量流失,Na+/K+值增大,从而打破原有的离子平衡,植物即受盐害[32, 33]。并且,由于K+是细胞内50多种酶的激活剂,细胞内过高浓度的Na+将竞争K+的结合位点,破坏胞质内多种酶促过程[34,35]。盐胁迫下,避免Na+进入细胞和增加细胞中Na+排出,同时维持细胞中K+的吸收和减少K+流失,继而提高K+/Na+比率,是植物应对盐胁迫共同的抵御策略[36]。研究发现,耐盐性玉米杂交种比敏感型杂交种有较高的K+/Na+比率[37]。盐处理液体培养条件下,玉米杂交种Pioneer 32B33和Pioneer 30Y87有较高的K+和Ca2+含量,以及较高的K+/Na+和Ca2+/Na+比率,能产生更高的生物量[38]。

玉米可把吸收的盐分区隔化在根、液泡和质外体中,也可通过生理上的调节忍受一定浓度的盐分[39]。盐胁迫下,玉米地上部和根部 Na+含量增加,根部 Na+、Cl-含量明显高于地上部,从而使地上部盐浓度保持较低水平,减缓盐害作用[23]。同时,根部和进入地上部的Na+均可被离子区隔化进入液泡中,以降低细胞的渗透势[39]。研究发现,100 mmol/L NaCl处理时,玉米液泡中 Na+含量较细胞质中的 Na+含量明显要高,且玉米质外体中 Na+含量也较细胞质明显要高[23,40]。另外,玉米将过多的Na+和Cl-迁移至茎和叶鞘中,以降低叶片中的离子毒性,也是玉米适应高盐胁迫的策略之一[41]。

2.2 有机渗透物质的调节

植物受到渗透胁迫造成的不平衡,通常在细胞内积累渗透保护物质(osmoprotectant)以降低细胞的渗透势,有利于维持植物在胁迫状态下的吸水,以保证植物正常的生理代谢需求。这些相容性溶质主要包括脯氨酸(proline,Pro)、甜菜碱(betaine)、海藻糖(trehalose)和多胺(polyamine,PA)等[42-44]。盐胁迫下,玉米的渗透调节物质主要是可溶性糖、甜菜碱、游离氨基酸和有机酸等有机溶质,以有机渗透调节为主。脯氨酸(Pro)被认为是植物在渗透胁迫下容易积累的一种相容渗透剂(compatibility osmoprotectant),研究表明,不同盐浓度处理下,玉米幼苗根系的脯氨酸含量均明显升高[45]。在 400 mmol/L NaCl胁迫下,甜玉米叶片可至少积累600 μmol/g 脯氨酸[46]。Mansour等[47]研究报道,盐胁迫可促使玉米体内脯氨酸和甜菜碱的大量积累。可溶性糖是许多非盐生植物遭受逆境胁迫下主要的渗透调节剂,盐胁迫条件下,耐盐强的玉米品种其可溶性糖含量高于盐敏感的玉米品种[48]。多胺(PA)是一类低分子量脂肪族含氮碱,在植物体内既可作为渗透调节物对细胞内离子平衡和 pH 进行调节,又可清除活性氧并增加保护酶的活性,且还可与含负电的蛋白、磷酸基团和DNA 等大分子结合影响其构象,调节基因表达。研究表明,用不同浓度的盐处理玉米离体叶片24 h后叶片中多胺含量明显增加[49]。

另外,研究报道,上述渗透调节物质如甜菜碱(betaine)和亚精胺 (spermidine) 等的外源施加,能使植物提高其耐盐性[50]。例如,外施低浓度的脯氨酸和甜菜碱等能使盐胁迫下的番茄(Solanum lycopersicum)叶中维持较高的K+浓度[51],也可使大麦根中盐胁迫引起的K+外流减少,提高其耐盐性[52,53]。玉米遭受盐胁迫时,外施低浓度的甜菜碱可促进玉米的生长,提高叶片的水含量和净光合产能[54]。

2.3 活性氧应答

盐胁迫下,活性氧的过度积累能诱发膜脂过氧化,破坏细胞膜系统的结构和功能,新陈代谢紊乱,最终导致植物受害[55,56]。抗氧化酶是植物体内的一套清除活性氧系统,主要包括超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)、过氧化氢酶(catalase, CAT)和抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)和谷胱甘肽还原酶(glutathione reductase,GR)等[57,58]。玉米体内抗氧化系统在逆境下表达量及活性的增加是提高其抗逆能力的重要因素。研究发现,在盐胁迫下,玉米体内的SOD、POD活性升高[59]。另外,不同盐浓度胁迫下,玉米SOD活性在大喇叭口期最高,灌浆期最低,而POD活性在大喇叭口期最高,三叶期最低,灌浆期略有升高;CAT活性随着盐浓度的增加而显著升高。综上,耐盐品种SOD、POD和CAT活性都高于盐敏感品种[13]。同时,盐胁迫还可诱导玉米多胺氧化酶(polyamine oxidase,PAO)活性升高,主要作用于叶片伸长区,促进生长[60,61]。另外,有研究表明,水培条件下的玉米用含有1 μmol/L H2O2的营养液预处理2天后,其耐盐性得到明显提高[62]。

2.4 植物激素调节

植物激素在植物适应盐胁迫中起到积极的调控作用。在盐胁迫下,植物体内的吲哚乙酸(indoleacetic acid,IAA)、脱落酸(abscisic acid,ABA)、细胞分裂素(cytokinin,CTK)、赤霉素(gibberellic acid,GA)等激素均发生不同程度的变化,其中ABA是受环境因素影响较大的一种激素[63]。研究发现,逆境条件下很多植物中的ABA水平明显上升[64,65],而且外源ABA处理使植物呈现的形态和生理反应都类似于这些逆境条件的刺激。Younis等[66]研究认为,盐胁迫下,玉米体内ABA的积累可调节气孔关闭,进而减少渗透胁迫造成的水分缺失。赵可夫等[67]研究表明,盐胁迫下外源ABA降低玉米幼苗细胞的渗透势,使幼苗在低水势盐渍条件下仍可获得一定水分,还可使地上部和根部的可溶性糖含量比值增大,地上部和根部的渗透势差增大,有利于水分从根向地上部运输。Khodary[68]研究报道,外施0.1 mmol/L ABA能改善盐胁迫下玉米的生长和发育。另外,叶面喷施2 mmol/L激动素(kinetin, KT)和吲哚乙酸(IAA)能促进必需元素的吸收,提高膜透性,进而有效对抗盐胁迫对玉米生长和产量的不利影响[15,69]。外施一定浓度的油菜素内酯(brassinosteroid, BR)也可使受盐胁迫影响的玉米幼苗恢复生长[70]。

3 玉米耐盐的分子调控机制

植物耐盐性是由多基因控制、多种生理生化及分子机制调控下的综合表现性状[29,71,72]。盐胁迫下,玉米中许多基因表达和蛋白积累的变化是非常重要的。研究发现,盐胁迫下,许多抗氧化防御基因的表达量增加。例如,玉米茎中过氧化物酶(CAT)的活性升高,其负责编码的mRNA的表达量也增加[8],而玉米叶片质膜上H+-ATPase活性的抑制,可能是由于盐胁迫诱导编码无效的H+-ATPase异构体的mRNA过量表达导致的[73,74]。Rodríguez-Kessler 等[75]研究发现,盐胁迫下,玉米中负责多胺和亚精胺合成的Zmodc 和Zmspds2A基因的表达上调,并且,多胺的代谢途径可能是玉米叶和根共同耐盐协调的重要关联点[76]。此外,盐胁迫下玉米中β-expansin蛋白的表达变化与茎生长受阻程度呈正相关,而β-expansin蛋白的表达变化是与其编码基因ZmExpB2、ZmExpB6和ZmExpB8的转录水平相一致[7]。另外,盐胁迫促使玉米中一些蛋白积累的改变,这些蛋白主要参与碳、氮代谢和酶活性的调节[77]。

目前,普遍认为玉米耐盐性是由位于不同染色体上多个基因控制的数量性状[78,79]。因此,培育转基因玉米可能需要同时转移多个基因,但实际操作比较困难。一些生化代谢的关键酶类和盐胁迫信号传导的一些重要基因已被克隆并转入玉米中[50],将大肠杆菌(Escherichia coli,E.coli)胆碱脱氢酶基因betA和6-磷酸山梨醇脱氢酶基因gutD转入玉米,转基因植株耐盐性均得到明显提高[80-82]。将甜菜碱醛脱氢酶基因(BADH cDNA)整合入玉米基因,转基因玉米的盐耐性也得到提高[83-85]。另外,将3个负责Na+外排的拟南芥基因AtSOS1、AtSOS2和AtSOS3一起转入玉米中,转基因玉米的抗性愈伤耐盐性明显增强,且后期转基因植株根系较对照发达[86]。将AtNHX1基因转入玉米中,AtNHX1的高表达使其耐盐性得到显著提高[87,88]。Chen等[89]将水稻OsNHX1基因转入玉米中,其转基因植株在200 mmol/L NaCl的耐盐性明显优于野生型。盐胁迫下,ZmNHX基因表达的升高可促使玉米叶片液泡膜上Na+/H+逆向转运体将细胞质中更多Na+区隔化进入液泡,保护细胞质免受Na+毒害[90]。

随着生物技术的不断发展,一系列与抗逆相关的转录因子相继被克隆出来,并应用到抗逆基因工程的研究中,主要有AP2/EREPB类、MYB/MYC类、bZIP类、WRKY类、NAC类,通过这些转录因子的超表达可以激活多个下游的功能基因来获得持久的抗逆性[91]。另外,研究发现,一些转录调控因子能与受盐碱、干旱等胁迫调控基因的启动子相结合,这些调控因子将会是用于调控基因表达的研究热点[92],已引起许多科学家的关注。如AP2/EREPB类转录调控因子DREB1A与DRE。DRE是调控许多对盐胁迫、干旱和低温等胁迫诱导基因启动子的顺式作用元件。转DREB1A基因植株中DRE基因过量表达,同时,许多与抗胁迫有关的基因也得以诱导表达,因而,转基因植株的抗逆能力也相应增强[93]。

4 存在问题与展望

近年来,许多玉米育种、栽培和生理学家们对玉米耐盐性进行了多方面的深入研究,并取得一定进展。尽管如此,国内外存在着玉米种质资源较匮乏、遗传多样性较低等问题,影响玉米耐盐种质的选育和研究。目前对玉米耐盐性机制的研究并不十分清楚,如关于玉米不同品系间耐盐差异的调控因素或关键因子是什么?其调控的分子机制如何?仍所知甚少。但随着玉米耐盐分子机制研究的不断深入,很多盐胁迫相关的调控因子的机理和作用将会被阐释,进而应用到玉米基因工程中,这必将为高效耐盐玉米的培育和玉米产量的提高奠定坚实的理论基础。

参 考 文 献:

[1] 丁海荣,洪立洲,杨智青,等. 盐碱地及其生物措施改良研究现状[J]. 现代农业科技, 2010(6):299-300,308.

[2] 陈复,郝吉明,唐华俊. 中国人口资源环境与可持续发展战略研究(第3卷)[M]. 北京:中国环境科学出版社,2000.

[3] 汤华,柳晓磊,罗秋芸. 玉米耐盐早期筛选体系的初步研究[J]. 海南大学学报(自然科学版),2007,25(2): 169-172,176.

[4] 翁跃进. 作物耐盐品种及其栽培技术[M]. 北京:中国农业出版社,2003.

[5] Katerji N,Hoorn J W V,Hamda A,et al. Salinity effect on crop development and yield,analysis of salt tolerance according to several classification methods[J]. Agr. Water Manage.,2003,62(1):37-66.

[6] 赵可夫. 植物抗盐机理[M]. 北京:中国科学技术出版社,1993.

[7] Geilfus C M,Zrb C,Mühling K H. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.)[J]. Plant Physiol. Biochem.,2010,48(12):993-998.

[8] Menezes-Benavente L,Kernodle S P,Margis-Pinheiro M,et al. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings[J]. Redox Rep.,2004,9(1):29-36.

[9] Munns R,Tester M. Mechanisms of salinity tolerance[J]. Ann. Rev. Plant Biol.,2008, 59:651-681.

[10]张永峰,殷波. 玉米耐盐性研究进展[J]. 玉米科学,2008,16(6):83-85.

[11]Qu C X,Liu C,Gong X L,et al. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress[J]. Environ. Exp. Bot.,2012,75:134-141.

[12]Karimi G,Ghorbanli M,Heidari H,et al. The effects of NaCl on growth,water relations, osmolytes and ion content in Kochia prostrate [J]. Biol. Plant,2005,49(2):301-304.

[13]Gunes A,Inal A,Alpaslam M,et al. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress andmineral nutrition inmaize (Zea mays L.) grown under salinity[J]. J. Plant Physiol.,2007,164:728-736.

[14]Turan M A,Elkarim A H A,Taban N,et al. Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant[J]. Afr. J. Agric. Res.,2010,5(7):584-588.

[15]Kaya C,Tuna A L,Okant A M. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions[J]. Turk. J. Agric. For.,2010,34(6): 529-538.

[16]Shahzad M,Witzel K,Zoerb C,et al. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress[J]. J. Agron. Crop Sci.,2012,198(1):46-56.

[17]Yasmeen A,Basra S M A,Farooq M,et al. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions[J]. Plant Growth Regul.,2013,69(3):225-233.

[18]王春英,张秀清,王志武. 玉米杂交种及自交系抗盐性鉴定[J]. 玉米科学,1996,4(2): 23-26.

[19]Khan A A,Rao S A,Neilly T M. Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.)[J]. Euphytica,2003,131(1): 81-89.

[20]Fortmeier R,Schubert S. Salt tolerance of maize(Zea mays L.):the role of sodium exclusion[J]. Plant Cell Environ.,1995,18(9):1041-1047.

[21]Sümer A,Zrb C,Yan F,et al. Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress[J]. J. Appl. Bot.Food Quality,2004,78(2):135-139.

[22]王宝山. NaCl胁迫下玉米苗质外体和共质体Na+、Ca2+浓度的变化[J]. 作物学报,1997, 23(1):27-33.

[23]王丽燕,赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报,2005,31(2):264-266.

[24]Hamdia M A El-Samad,Shaddad M A K,Doaa M M. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J]. Plant Growth Regul.,2004,44(2):165-174.

[25]商学芳,董树亭,郑世英,等. 玉米萌发过程中Na+、K+和Ca2+含量变化与耐盐性的关系[J]. 作物学报,2008,34(2):333-336.

[26]Cramer G R,Epstein E,Luchli A. Kinetics of root elongation of maize in response to short term exposure to NaCl and elevated calcium concentration[J]. J. Exp. Bot., 1988,39(11):1513-1522.

[27]张乃华,高辉远,邹琦. Ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用[J]. 植物生态学报,2005,29(2):324-330.

[28]Neto A D D A,Prisco J T,Enéas-Filho J,et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes[J]. Environ. Exp. Bot.,2006,56(1):87-94.

[29]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Curr. Opin. Plant Biol., 2003,6(5):441-445.

[30]Miller G ,Suzuki N,Ciftci-Yilmaz S,et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ.,2010,33(4):453-467.

[31]Gupta B,Huang B. Mechanism of salinity tolerance in plants:physiological, biochemical,and molecular characterization[J]. Int. J. Genomics,2014,2014(1): 727-740.

[32]Maathuis F J M,Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios[J].Ann. Bot.,1999,84(2):123-133.

[33]Mahajan S,Tuteja N. Cold,salinity and drought stresses:an overview[J]. Arch. Biochem. Biophys.,2005,444(2):139-158.

[34]Amtmann A,Sanders D. Mechanisms of Na+ uptake by plant cells[J]. Adv. Bot. Res., 1999,29(8):75-112.

[35]Blumwald E. Sodium transport and salt tolerance in plants[J]. Curr. Opin. Cell Biol., 2000,12(4):431-434.

[36]Wakeel A,Farooq M,Qadir M,et al. Potassium substitution by sodium in plants[J]. Crit. Rev. Plant Sci., 2011,30(4):401-413.

[37]Akram M,Malik M A,Saleem M F,et al. Competetive seedling growth and K+/Na+ ratio in different maize(Zea mays L.) hybrids under salinity stress[J]. Pak. J. Bot., 2007,39(7):2553-2563.

[38]Akram M,Ashraf M Y,Ahmad R,et al. Allometry and yield components of maize (Zea mays L.) hybrids to various potassium levels under saline conditions[J]. Arch. Biol. Sci. Belgrade,2010,62(4):1053-1061.

[39]Neubert A B,Zrb C,Schubert S. Expression of vacuolar Na+/H+ antiporters(ZmNHX) and Na+ exclusion in roots of maize(Zea mays L.) genotypes with improved salt resistance[M]//Li C J,et al. (eds) Plant nutrition for food security,human health and environmental protection. Tsinghua University Press,Bejing,China,2005:544-545.

[40]王宝山,赵可夫. NaCl胁迫下玉米黄化苗质外体和共质体Na+、Ca2+浓度的变化[J]. 作物学报,1997,23(1):27-33.

[41]Isla R,Aragüés R. Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations[J]. Field Crops Res.,2010, 116(1/2):175-183.

[42]Hall J L,Harvey D M R,Flowers T J. Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima[J]. Planta,1978,140(1):59-62.

[43]Serraj R,Sinclair T R. Osmolyte accumulation:can it really help increase crop yield under drought conditions?[J]. Plant Cell Environ.,2002,25(2):333-341.

[44]Farooq M,Hussain M,Wakeel A,et al. Salt stress in maize:effects,resistance mechanisms,and management. A review[J]. Agron. Sustain. Dev.,2015,35(2):461-481.

[45]汤华,柳晓磊. 盐胁迫下玉米苗期农艺性状和脯氨酸含量变化的研究[J]. 中国农学通报, 2001,23(3):244-249.

[46]de Azevedo Neto A D,Prisco J T,Enéas-Filho J,et al. Effects of salt stress on plant growth,stomatal response and solute accumulation of different maize genotypes [J]. Braz. J. Plant Physiol.,2004,16(1):31-38.

[47]Mansour M M F,Salama K H A,Ali F Z M,et al. Cell and plant responses to NaCl in Zea mays cultivars differing in salt tolerance[J]. Gen. Appl. Plant Physiol.,2005, 31(1/2):29-41.

[48]翟凤林. 植物的耐盐性及其改良[M]. 北京:农业出版社,1989.

[49]刘俊. 植物体内多胺代谢的调节与抗盐性的关系及多胺在其信号转导中的地位[D]. 南京:南京农业大学,2004.

[50]张新春,庄炳昌,李自超. 植物耐盐性研究进展[J]. 玉米科学,2002,10(1):50-56.

[51]Heuer B. Influence of exogenous application of proline and glycine betaine on growth of salt-stressed tomato plants[J]. Plant Sci.,2003,165(4):693-699.

[52]Cuin T A,Shabala S. Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots[J]. Plant Cell Physiol.,2005,46(12): 1924-1933.

[53]Cuin T A,Shabala S. Amino acids regulate salinity-induced potassium efflux in barley root epidermis[J]. Planta,2007,225(3):753-761.

[54]Yang X H,Lu C M. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants[J]. Physiol. Plant,2005,124(3):343-352.

[55]Gossett D R,Millhollon E P,Lucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton[J]. Crop Sci.,1994,34(3):706-714.

[56]Balestrasse K B,Gardey L,Gallego S M,et al. Response of antioxidant defence system in soybean nodules and roots subjected to cadmium stress[J]. Aust. J. Plant Physiol., 2001,28:497-504.

[57]Noctor G,Foyer C H. A scorbate and glutathione:keeping active oxygen under control[J]. Anuu. Rev. Plant Physio. Plant Mol. Biol.,1998,49:249-279.

[58]Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis[J]. Plant Physiol.,2001,126(1):445-462.

[59]马纯艳,李玥莹. 不同玉米品种的抗盐性及分子标记的比较研究[J]. 吉林农业大学学报, 2006,28(2):123-126,132.

[60]Erdei L,Szegletes Z,Barabás K,et al. Responses in polyamine titer under osmotic and salt stress in sorghum and maize seedlings[J]. J. Plant Physiol.,1996,147(5): 599-603.

[61]Rodríguez A A,Maiale S J,Menéndez A B,et al. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress[J]. J. Exp. Bot.,2009,60(15): 4249-4262.

[62]de Azevedo Neto A D,Prisco J T,Enéas-Filhob J,et al. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants[J]. J. Plant Physiol.,2005,162(10): 1114-1122.

[63]Giraudat J,Parcy F,Bertauche N,et al. Current advances in abscisic acid action and signaling [J]. Plant Mol. Biol.,1994,26(5):1557-1577.

[64]周翔,吴晓岚,李云,等. 盐胁迫下玉米幼苗ABA和GABA的积累及其相互关系[J]. 应用与环境生物学报,2005,11(4):412-415 .

[65]Roychoudhury A,Paul S,Basu S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress[J]. Plant Cell Rep.,2013, 32(7):985-1006.

[66]Younis M E,El-Shahaby O A,Nematalla M M,et al. Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays[J]. Agronomie.,2003,23(4):277-285.

[67]赵可夫,范海,Harris P J C. 盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J]. 植物学报,1995,37(4): 295-300.

[68]Khodary S E A. Effect of salicylic acid on the growth,photosynthesis and carbohydrate metabolism in salt-stressed maize plants[J]. Int. J. Agric. Biol.,2004,6:5-8.

[69]Darra B L,Saxena S N. Role of IAA on the mineral composition of maize crop under various osmotic stressed conditions[J]. Plant Soil.,1973,38(3):657-661.

[70]He R Y,Wang G J,Wang X S. Effect of brassinolide on growth and chilling resistance of maize seedlings. In:Cutler H G,Yokota T,Adam G (eds) Brassinosteroids[M]. Am. Chem. Soc. Symposium Series.,1991,474:220-230.

[71]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant Cell Environ.,1993,16(1):15-24.

[72]Zhang J L,Shi H. Physiological and molecular mechanisms of plant salt tolerance [J]. Photosynthesis Res.,2013,115(1):1-22.

[73]Zrb C,Stracke B,Tramnitz B,et al. Does H+ pumping by plasmalemma ATPase limit leaf growth of maize(Zea mays) during the first phase of salt stress?[J]. J. Plant Nutr. Soil Sci.,2005,168(4):550-557.

[74]Pitann B,Zrb C,Mühling K H. Comparative proteome analysis of maize(Zea mays L.) expansins under salinity[J]. J. Plant Nutr. Soil Sci.,2009,172(1):75-77.

[75]Rodríguez-Kessler M,Alpuche-Solís A G,Ruiz O A,et al. Effect of salt stress on the regulation of maize(Zea mays L.) genes involved in polyamine biosynthesis[J]. Plant Growth Regul.,2006,48(2):175-185.

[76]Qing D J,Lu H F,Li N,et al. Comparative prfiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress[J]. Plant Cell Physiol.,2009,50(4):889-903.

[77]Zrb C,Schmitt S,Neeb A,et al. The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by amitigation of symptoms and not by a specific adaptation[J]. Plant Sci.,2004,167(1):91-100.

[78]Foolad M R,Jones R A. Mapping salt-tolerance genes in tomato(Lycopersicon esculentum) using trait-based marker analysis[J]. Theor. Appl. Genet.,1993,87:184-192.

[79]Rao S A,McNeilly T. Genetic basis of variation for salt tolerance in maize(Zea mays L.)[J]. Euphytica,1999,108(3):145-150.

[80]刘岩,王国英 刘俊君,等. 大肠杆菌gutD基因转入玉米及耐盐转基因植株的获得[J]. 中国科学:C辑,1998,28(6):542-547.

[81]杨爱芳,张可炜,尹小燕,等. 转基因耐盐玉米自交系的农艺性状及杂种优势表现的分析[J]. 中国农业科学,2007,40(12):2895-2902.

[82]Liu Y,Wang G,Liu J,et al. Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants[J]. Sci. China Ser. C.,1999,42(1):90-95.

[83]何锶洁,董伟,李慧芬,等. 转甜菜碱醛脱氢酶基因玉米及其耐盐性研究[J]. 高技术通讯, 1999(2):50-52 .

[84]Wu W,Su Q,Xia X Y,et al. The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment[J]. Euphytica,2008,159(1/2):17-25.

[85]He S J,Dong W,Li H F,et al. Production and salt tolerance identification of transgenic maize with betaine aldehyde dehydrogenase gene[J]. High Technol. Lett.,1999,9(2): 50-52.

[86]程艳松,杨会,侯丽宏,等. 三个拟南芥抗盐基因在玉米基因组中整合、表达及抗盐性能的研究[J]. 中国农学通报,2008,24(2):211-218.

[87]Yin X Y,Yang A F,Zhang K W,et al. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene[J].Exp.cell Res., 2004,94(2):321-326.

[88]Li B,Li N,Duan X,et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system[J]. J. Biotechnol,2010,145(2):206-213.

[89]Chen M,Chen Q J,Niu X G,et al. Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field[J]. Plant Soil Environ.,2007, 53(11):490-498.

[90]Pitann B,Mohamed A K,Neubert A B,et al. Tonoplast Na+/H+ antiporters of newly developed maize(Zea mays) hybrids contribute to salt resistance during the second phase of salt stress[J]. J. Plant Nutr. Soil Sci.,2013,176(2):148-156.

[91]Agarwal P K,Agarwal P,Reddy M K,et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep.,2006,25(12): 1263-1274.

[92]Shinozaki K,Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiol.,1997,115(2):327-334.

[93]Kasuga M,Liu Q,Miura S,et al. Improving plant drought,salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat. Biotechnol.,1999,17(3):287-291.

猜你喜欢

耐盐性玉米
收玉米啦!
我的玉米送给你
为什么玉米长“胡须”
盐胁迫提高金盏菊和万寿菊的耐盐性
不同NaCl浓度对菜用大黄种子萌发与幼苗生长的影响
不同NaCl浓度胁迫对冰菜种子萌发和组培苗生长的影响
NaCl胁迫下木芙蓉幼苗叶片的抗氧化特性