APP下载

NA序列自正则加权和的几乎处处中心极限定理

2016-12-10付宗魁吴群英

付宗魁+吴群英

摘 要 设{X,Xn,n≥1}为严平稳的NA随机变量序列,{ani,1≤i≤n,n≥1}为实数阵列,Sn=∑ni=1aniXi,V2n=∑ni=1a2niX2i. 在适当的条件下, 证明了NA序列自正则加权和的几乎处处中心极限定理.

关键词 NA序列; 自正则加权和; 几乎处处中心极限定理

中图分类号 O211.4 文献标识码 A 文章编号 1000-2537(2016)05-0089-06

Abstract Let {X,Xn,n≥1} be a sequence of strictly stationary negatively associated random variables, {ani,1≤i≤n,n≥1} be an array of real numbers with Sn=∑ni=1aniXi,V2n=∑ni=1a2niX2i. Under some suitable assumptions, we proved almost sure central limit theorem for self-normalized weighted sums of negatively associated random variables.

Key words negatively associated random variables; self-normalized weighted sums; almost sure central limit theorem

称随机变量X1,X2,…,Xn,n≥2是Negatively Associated (简记为NA)的,若对集合{1,2,…,n}的任意两个非空不交子集A1, A2, 均有cov(f1(Xi;i∈A1),f2(Xj;j∈A2))≤0.其中,fi,i=1,2是使上式有意义且对各变元不降(或不升)的函数.称随机变量序列{Xn,n≥1}是NA列,如果对任意n≥2,X1,X2,…,Xn是NA的. 近年来,自正则极限理论是概率论研究的一个热门话题,许多学者已得到了很多结果.文献[1]得到了混合序列自正则随机和乘积的渐近性;文献[2]得到了自正则和在正态吸引律下的几乎处处中心极限定理,文献[3]得到了φ混合序列自正则加权和的中心极限定理等.但关于自正则加权和的极限理论研究不多,本文讨论了NA序列自正则加权和的几乎处处中心极限定理.

参考文献:

[1]LIU W D, Lin Z Y. Asymptotics for self-normalized random products of sums for mixing sequences[J]. Stoch Anal Appl, 2007,25(2):293-315.

[2]WU Q Y. A note on the almost sure limit theorem for self-normalized partial sums of random variables in the domain of attraction of the normal law[J]. Inequal Appl, 2012,17(1):242-252.

[3]刘 影,张 勇,董志山.φ混合序列自正则加权和的中心极限定理[J]. 吉林大学学报(自然科学版), 2008,46(3):643-648.

[4]NEWMAN C M. Normal fluctuations and the FKG inequalities[J]. Comm Math Phys, 1980,74(2):119-128.

[5]群 英.混合序列的概率极限理论[M]. 北京:科学出版社,2006.

[6]BILLINGSLEY P. Convergence of probability measures[M]. New York: Wiley, 1968.

[7]PELIGRAD M, SHAO Q M. A note on the almost sure central limit theorem for weakly dependent random variables[J]. Statist Probab Lett, 1995,22(2):131-136.

[8]ZHANG L X. The weak convergence for functions of negatively associated random variables[J]. Multivar Anal, 2001,78(6):272-298.

[9]WU Q Y. Almost sure central limit theory for self-normalized products of sums of partial sums[J]. J Math Anal Appl, 2012,27(2):243-257.

(编辑 HWJ)