大尤尔都斯高寒草原退化演替序列的划分
2016-12-09张爱宁安沙舟荀其蕾董乙强苏清荷
张爱宁,安沙舟,荀其蕾,董 磊,董乙强,苏清荷
(1.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052; 2.和静县草原工作站,新疆 和静 841300;3.巴州草原工作站,新疆 库尔勒 841000)
大尤尔都斯高寒草原退化演替序列的划分
张爱宁1,安沙舟1,荀其蕾1,董 磊2,董乙强1,苏清荷3
(1.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052; 2.和静县草原工作站,新疆 和静 841300;3.巴州草原工作站,新疆 库尔勒 841000)
紫花针茅;退化演替;聚类分析
紫花针茅(Stipapurpurea)草原是巴音布鲁克大尤尔都斯高寒草原上主要的草地类型[1]。它的分布范围极广,不仅在维护自然生态系统稳定性方面起着重要作用,同时还为畜牧业的发展提供了物质基础,对巴音布鲁克高寒草原生态效益与社会经济效益具有重大意义[2]。但是由于不断增长的畜产品需求,导致放牧超载严重,草地退化情况非常普遍,局部区域已经重度退化,使得植物群落逆向演替,造成草地生产力和总生物量的下降,严重制约着当地草地畜牧业的发展[3]。因此,对由于放牧造成的草地退化演替序列进行划分,能够深入了解退化草地植被群落的结构与功能[4],群落优势种的重要作用,以及放牧干扰对草地退化演替的影响机制[5],这在监测该地区的草地利用状况和恢复退化草地等方面具有一定的指导意义[4]。在草地退化演替序列的划分上,前人已做了大量研究工作,如以植物群落特征及植物多样性的变化来判定草地退化等级[6];基于净初级生产力的变化对草地退化进行监测研究[7];以植被生产力的降低作为草地退化演替的指标进行研究[8];以优势种羊草(Leymuschinensis)的数量作为聚类指标,运用聚类分析对羊草草地退化演替草地进行划分[9];以生态因子指标作为聚类指标,运用聚类分析对辽西低山丘陵区生态系统退化状况进行定量确定[10];建立植被与气候共同作用来判定草地退化等级的数据模型[11]。对草地退化的水分因素的研究表明,土壤水分流失会导致草地退化[12]。划分退化草地等级大多采用定性指标,也有少数学者采用定量指标进行划分[13],草地植被的数量指标是评价草地退化程度的重要依据。巴音布鲁克大尤尔都斯高寒草地是当地主要的放牧草地。因此,本研究以植被数量指标聚类分析的方法为主要切入点,对巴音布鲁克大尤尔都斯高寒草地进行研究,以期了解:1)巴音布鲁克大尤尔都斯高寒草地退化程度分为几个等级,不同退化程度草地的演替模式与植被特征情况;2)能否将紫花针茅的重要值作为划分此类型草地退化等级的重要指标?3)系统聚类的结果与各样地相似性比较的结果是否一致?
1 材料与方法
1.1 研究地区概况
巴音布鲁克草原位于新疆巴州和静县西北,伊犁谷底东南,中部天山南麓,东西长270 km,南北宽136 km,平均海拔约2 500 m,四周山体海拔在3 000 m以上,面积约2.3万km2,是我国第一大亚高山高寒草甸草原[14]。巴音布鲁克草原由小尤尔都斯草原和大尤尔都斯草原组成[15],草地总面积14 972.67 hm2,可利用草地面积14 160.67 hm2,其中大尤尔都斯草地面积9 430.67 hm2,占总面积的63%,小尤尔都斯草地面积5 540.67 hm2,占总面积的37%[4]。巴音布鲁克地区年均气温-4.2 ℃,≥0 ℃年积温1 341.5 ℃·d,≥10 ℃年积温306.5 ℃·d,极端最低气温-49.6 ℃,年均风速2.8 m·s-1,多年平均降水量280.5 mm,年蒸发量1 132.4 mm,全年积雪日数137 d,最大积雪深度为45 cm,属典型的高寒气候[16]。土壤类型为亚高山草原土[17]。紫花针茅+羊茅(Festucaovina)草原是研究区域内典型的高寒草原类型[18],分布范围在海拔2 460-2 760 m,群落种类分属19科40属,群落总盖度约50%[19]。
1.2 研究方法
重要值IV=(Rh+Rc+Rd+Ry)/4,其中Rh为草地植物相对高度,Rc为相对盖度,Rd为相对密度,Ry为生物学相对鲜重。
1.3 数据分析
聚类分析(clusteranalysis)是以分类对象的特征数量作为指标,定量确定其分类对象之间的相似性,并将相对同质的群组统计归为一类的统计方法[20]。因此以不同样地中6种植物的重要值作为数据,采用SPSS20.0软件,选择系统聚类分析(hierarchicalcluster) 模块,聚类方法选择组之间的连接,计算出各变量间的距离,得到样本矩阵,测量区间为平方Euclidean距离即每个变量之差的平方和,最终得出树状聚类图。通过聚类图中的聚类距离(横轴数值)分析比较各数据间的相似程度,从而将各样地归类,根据归类结果结合植被特征指数划分草地退化等级。
2 结果与分析
2.1 退化演替序列的划分与特征分析
表1 各样地紫花针茅、羊茅属草属、委陵菜属、苔草属、赖草属的重要值Table 1 The important value of Stipa, Festuca, Koeleria, Potentilla, Carex,Leymus in different sample plots
对36个样地进行聚类分析,结果表明(图1),在聚类距离为15时可将36个样地分为4类。由于27号样地是和静县国家级固定监测点XJW087(83°45.216′ E,42°50.544′ N,海拔2 444 m),因此将监测点内植物群落设定为未退化群落。未退化草地为10、11、14、20、21、27、30号样地,共7个样地,地上生物量达到479.34 g·m-2,盖度达到58.37%,其中紫花针茅是优势种,其地上生物量为55.69 g·m-2,盖度为37.15%,分别占群落的11.62%和66.71%。轻度退化草地为 2、8、9、12、18、23、28、29、31、32、34、35号样地,共12个样地,地上生物量为434.12 g·m-2,植被盖度下降至53.86%,其中紫花针茅生物量为25.85 g·m-2,其盖度下降至15.65%,分别占群落的5.96%和19.60%。中度退化草地为17、19、24、25、26、36号,共6个样地,由于长期受到家畜啃食、践踏等强烈干扰,群落为适应恶劣环境改变了群落结构,马先蒿和苔草取代紫花针茅成为优势种,群落地上生物量和盖度比轻度退化略低,但由于马先蒿等植物的入侵,紫花针茅的正常生长受到抑制,其地上生物量下降为20.67 g·m-2,盖度下降为7.83%,分别占群落的4.85%和14.57%。重度退化草地为1、3、4、5、6、7、13、15、16、22、33号样地,共11个样地,马先蒿、无芒雀麦(Bromusinermis)、细柄茅(Ptilagrostis)等植被的大量增加使紫花针茅的密度下降,群落地上生物量降至220.11 g·m-2,盖度降至45.39%,紫花针茅的地上生物量和盖度也明显下降,分别为8.00 g·m-2和5.77%,占群落的3.63%和12.71%。
未退化草地各样地间的显著相似系数在0.84~0.97(表2)。轻度退化草地各样地间的显著相似系数为0.86~0.98,与未退化群落之间的相似系数在-0.69~0.80。中度退化草地各样地之间的显著相似系数在0.83~0.99,与轻度退化之间的相似系数在-0.90~0.06。重度退化草地各样地之间的相似系数在0.82~0.97,与中度退化之间相似系数在-0.36~0.23。
2.2 不同退化阶段主要植物种类组成及特征
3 讨论与结论
图1 各样地树状聚类图Fig.1 The cluster dendrogram of sample plots表2 各样地相似性Table 2 The similarity of sample plots
样地Code12345678910111213141516171811.002-0.371.0030.86*-0.101.0040.91*-0.420.92**1.0050.84*-0.650.450.651.0060.91*-0.630.630.760.95**1.0070.58-0.93**0.230.490.87*0.84*1.008-0.690.56-0.27-0.41-0.90*-0.87*-0.82*1.0090.290.500.430.37-0.06-0.12-0.480.291.00100.41-0.460.610.700.200.350.300.120.081.00110.52-0.550.700.750.280.490.47-0.14-0.120.86*1.0012-0.320.95**-0.06-0.32-0.59-0.60-0.93**0.640.62-0.29-0.531.00130.90*-0.460.620.680.92**0.97**0.72-0.89*-0.070.200.35-0.451.00140.56-0.640.660.780.410.570.55-0.16-0.100.95**0.94**-0.530.421.00150.78-0.780.590.730.82*0.93**0.89*-0.76-0.330.530.72-0.770.85*0.761.00160.73-0.340.320.510.88*0.730.55-0.740.30-0.06-0.10-0.250.750.060.461.0017-0.51-0.54-0.62-0.46-0.13-0.140.38-0.05-0.90*-0.050.08-0.63-0.250.060.13-0.411.0018-0.360.380.13-0.11-0.69-0.48-0.560.75-0.010.440.330.41-0.490.27-0.27-0.83*0.011.0019-0.46-0.60-0.55-0.39-0.09-0.090.42-0.05-0.89*0.050.17-0.67-0.220.160.19-0.400.99**0.04200.44-0.570.490.560.400.560.51-0.17-0.310.85*0.76-0.440.450.90*0.720.020.150.34210.26-0.580.440.560.130.280.370.13-0.150.96**0.88*-0.450.100.94**0.53-0.200.220.45220.450.060.110.080.610.530.24-0.620.01-0.33-0.380.090.69-0.220.260.67-0.34-0.48230.040.11-0.10-0.190.080.090.11-0.48-0.20-0.69-0.23-0.170.18-0.470.030.100.09-0.4624-0.26-0.42-0.64-0.500.250.150.49-0.50-0.82*-0.49-0.34-0.520.15-0.300.170.110.73-0.4925-0.35-0.41-0.69-0.560.140.050.44-0.41-0.85*-0.49-0.31-0.530.04-0.310.12-0.010.81-0.4126-0.68-0.26-0.75-0.66-0.34-0.380.130.06-0.75-0.37-0.16-0.43-0.45-0.28-0.17-0.480.91*-0.06270.35-0.490.510.590.210.370.340.09-0.110.97**0.80-0.320.220.93**0.56-0.110.080.48280.010.150.440.31-0.35-0.15-0.330.610.210.770.550.29-0.210.590.01-0.49-0.200.88*29-0.110.86*0.21-0.13-0.54-0.42-0.740.370.48-0.34-0.190.72-0.27-0.42-0.50-0.35-0.550.37300.61-0.570.730.85*0.410.540.47-0.110.120.96**0.91*-0.430.380.97**0.680.15-0.110.2131-0.060.800.24-0.07-0.47-0.38-0.680.300.53-0.36-0.180.65-0.24-0.42-0.47-0.26-0.560.25320.150.010.550.50-0.22-0.06-0.210.540.360.87*0.660.17-0.160.690.09-0.34-0.270.73330.72-0.87*0.580.790.750.83*0.86*-0.57-0.220.710.81-0.790.680.88*0.94**0.410.15-0.2034-0.12-0.070.310.26-0.45-0.26-0.160.520.050.620.70-0.09-0.400.540.03-0.640.140.67350.03-0.430.290.41-0.15-0.040.160.320.020.740.76-0.38-0.250.690.23-0.350.240.3836-0.65-0.32-0.87*-0.68-0.20-0.350.19-0.02-0.64-0.45-0.35-0.42-0.42-0.38-0.22-0.240.85*-0.30
续表2
样地Code192021222324252627282930313233343536123456789101112131415161718191.00200.241.00210.310.84*1.0022-0.360.05-0.471.00230.02-0.58-0.620.141.00240.69-0.08-0.310.330.391.00250.77-0.11-0.280.190.410.99**1.00260.87*-0.25-0.10-0.420.360.700.801.00270.170.94**0.95**-0.22-0.73-0.33-0.33-0.291.0028-0.140.610.70-0.38-0.73-0.68-0.65-0.400.771.0029-0.60-0.51-0.44-0.100.39-0.52-0.48-0.25-0.430.141.0030-0.010.800.91*-0.26-0.51-0.46-0.47-0.410.89*0.59-0.361.0031-0.62-0.58-0.46-0.130.47-0.52-0.49-0.24-0.490.050.98**-0.331.0032-0.190.580.79-0.49-0.72-0.79-0.76-0.450.800.95**0.080.750.031.00330.230.760.730.02-0.190.02-0.01-0.170.700.14-0.610.85*-0.560.291.00340.190.290.69-0.88*-0.23-0.55-0.430.110.510.660.200.560.200.750.221.00350.310.390.82*-0.85*-0.34-0.42-0.330.130.620.52-0.180.73-0.140.690.490.90*1.00360.81-0.35-0.21-0.280.290.760.83*0.94**-0.38-0.56-0.41-0.46-0.38-0.57-0.18-0.110.011.00
注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
Note: * and ** indicate significant correlation at 0.05 and 0.01 level, respectively.
表3 不同退化草地主要植物种类组成及特征Table 3 The constitutes and characteristics of main plant species in different degraded stages
草地退化的主要因素包括气候与人为,本研究中过度放牧是导致草地退化的主要因素。随着牧压强度的变化,草原植物群落的各植物种生态生物学特性及其功能地位发生变化[21]。随着草地退化程度加剧,群落结构变化,原生顶级植被紫花针茅的优势地位被最先入侵的赖草、细柄茅和早熟禾等禾本科草类所取代,其原因可能是由于家畜通过采食行为和践踏作用导致土壤坚实[22-23],而赖草、细柄茅和早熟禾等小丛生禾草层以其强壮的根茎和更为广泛的生境适应性迅速繁衍,成为独立的优势群落。小半灌木层片的蒿属植物在演替过程中以特异的气味来干扰动物的采食行为,也增加其有性繁殖机会。随着牧压增大,中层植被中逐渐出现了以毒素来保护自身不被动物采食的马先蒿、唐松草等毒害草[24],可食性牧草种类减少[25]。重度退化时,下层植被苔草、羊茅成为主要优势植被,一方面由于植物高度下降限制了动物的采食行为,另一方面丛生草层繁殖能力较强。紫花针茅原有优势地位完全被替代,其生物量与盖度明显下降[26]。
在植物群落研究中重要值常被用于群落中物种数量分类及优势种集中趋势的分析[27]。前人研究多以植被特征数量值为划分草地退化等级的重要指标[28],如冯秀等[29]以草地植物生物量作为评价草地退化等级的重要指标。而在本研究中发现,以紫花针茅为优势种的植物群落,36个样地中紫花针茅重要值排名前7位的与聚类结果中未退化草地完全一致,轻度退化阶段有4个样地的紫花针茅重要值与划分结果一致,中度与重度退化阶段各有两个样地的紫花针茅重要值与之相符。因此,可将紫花针茅的重要值作为划分巴音布鲁克大尤尔都斯紫花针茅高寒草原退化等级的重要指标,样地中其它主要植物可作为辅助划分依据。但是否适用于其它草地类型还有待验证。
根据系统聚类得出巴音布鲁克大尤尔都斯紫花针茅高寒草原可分为未退化草地、轻度退化草地、中度退化草地、重度退化草地4个退化等级。相同等级内各样地间相似性系数均呈正相关关系,且相关系数平均在0.84~0.98,而不同等级间的样地相似性系数相似性系数在-0.65~0.36。由此可得,相同等级内各样地间相似性大,不同等级间样地相似性小。这表明,系统聚类的结果与各样地相似性比较的结果相一致。
研究中不足之处:一是以原生优势植物重要值作为划分草地退化等级的重要指标这一结论仅限于此次对巴音布鲁克大尤尔都斯紫花针茅高寒草原的研究中,并未对其它相似类型草原作同样研究,因此以原生优势植物重要值作为判定草地退化重要指标还有待其它研究结果的验证。二是未涉及土壤方面的研究,无法评判土壤对草地退化方面的影响。
References:
[1] 岳鹏鹏,卢学峰,叶润蓉,周玉碧,杨仕兵,张长现,彭敏.江河源不同区域紫花针茅草原群落特征.植物生态学报,2008,32(5):1116-1125.
Yue P P,Lu X F,Ye R R,Zhou Y B,Yang S B,Zhang C X,Peng M.Community characteristics ofStipapurpureasteppe in source regions of Changjiang and Huanghe Rivers,China.Journal of Plant Ecology,2008,32(5):1116-1125.(in Chinese)
[2] 肖金玉,蒲小鹏,徐长林.禁牧对退化草地恢复的作用.草业科学,2015,32(1):138-145.
Xiao J Y,Pu X P,Xu C L.Effects of grazing prohibition on restoration of degraded grassland.Pratacultural Science,2015,32(1):138-145.(in Chinese)
[3] 刘洪来,朱进忠,靳瑰丽,范燕敏,王彩虹,杨兴伟.伊犁绢蒿荒漠草地退化演替序列的划分.新疆农业科学,2007,44(2):137-141.
Liu H L,Zhu J Z,Jin G L,Fan Y M,Wang C H,Yang X W.Division on degraded successional series ofSeriphidiumtransillensedesert grassland.Xinjiang Agricultural Sciences,2007,44(2):137-141.(in Chinese)
[4] 任国华,邓斌,后源.黄河源区沼泽湿地退化过程中植物群落特征的变化.草业科学,2015,32(8):1222-1229.
Ren G H,Deng B,Hou Y.Changes of community characteristics in the degradation process of the alpine swamp wetland in the Yellow River Source areas.Pratacultural Science,2015,32(8):1222-1229.(in Chinese)
[5] 陈全功.江河源区草地退化与生态环境的综合治理.草业学报,2007,16(1):10-15.
Cheng Q G.Grassland deterioration in the source region of the Yangtze-Yellow rivers and integrated control of the ecological environment.Acta Prataculturae Sinica,2007,16(1):10-15.(in Chinese)
[6] 柳小妮,孙九林,张德罡,蒲小鹏,徐广平.东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究.草业学报,2008,17(4):1-11.
Liu X N,Sun J L,Zhang D G,Pu X P,Xu G P.A study on the community structure and plant diversity of alpine meadow under different degrees of degradation in the Eastern Qilian Mountains.Acta Prataculturae Sinica,2008,17(4):1-11.(in Chinese)
[7] 吴红,安如,李晓雪,曲春梅,陆玲,杨仁敏,龚天宇.基于净初级生产力变化的草地退化监测研究.草业科学,2011,28(4):536-542.
Wu H,An R,Li X X,Qu C M,Lu L,Yang R M,Gong T Y.Remote sensing monitoring of grassland degradation based on NPP change in the Maduo County of the sources region of Yellow River.Pratacultural Science,2011,28(4):536-542.(in Chinese)
[8] 刘钟龄,王炜,梁存柱,郝敦元.内蒙古草原植被在持续牧压下退化演替的模式与诊断.草地学报,1998(4):244-251.
Liu Z L,Wang W,Liang C Z,Hao D Y.The regressive suceession pattern and its diagnostic of Inner Mongolia steppe in sustained and superstrong grazing.Acta Agrestia Sinica,1998(4):244-251.(in Chinese)
[9] 王仁忠,李建东.采用系统聚类分析法对羊草草地放牧演替阶段的划分.生态学报,1991,11(4):367-371.
Wang R Z,Li J D.Cluster analysis method for dividing successinal stages ofAnurolepidiumchinensegrassland for grazing.Acta Ecologica Sinica,1991(4):367-371.(in Chinese)
[10] 杜晓军,姜凤岐,沈慧,林鹤鸣,郭浩,王世忠.辽西低山丘陵区生态系统退化程度的定量确定.应用生态学报,2001,12(1):156-158.
Du X J,Jiang F Q,Shen H,Lin H M,Guo H,Wang S Z.Quantitative measurement on degradation degree of ecosystem in hilly region of western Liaoning Province.Chinese Journal of Applied Ecology,2001,12(1):156-158.(in Chinese)
[11] 辜智慧,史培军,陈晋,葛怡.基于植被-气候最大响应模型的草地退化评价.自然灾害学报,2010,19(1):13-20.
Gu Z H,Shi P J,Chen J,Ge Y.Estimation of grassland degradation based on maximum response of vegetation to climate.Journal of Natural Disasters,2010,19(1):13-20.(in Chinese)
[12] 魏永胜,梁宗锁,山仑.草地退化的水分因素.草业科学,2004,21(10):13-18.
Wei Y S,Liang Z S,Shan L.The role of water in grassland degeneration.Pratacultural Science,2004,21(10):13-18.(in Chinese)
[13] 闫玉春,唐海萍.草地退化相关概念辨析.草业学报,2008,17(1):93-99.
Yan Y C,Tang H P.Differentiation of related concepts of grassland degradation.Acta Prataculturae Sinica,2008,17(1):93-99.(in Chinese)
[14] 何文革,李小芳,李文利.巴音布鲁克草原重要作用及其退化原因与利用建议.湖北畜牧兽医,2008(10):33-34.
He W G,Li X F,Li W L.The important role in the use of recommendation and grassland degradation reasons over Bayinbuluke.Hubei Journal of Animal and Veterinary Science,2008(10):33-34.(in Chinese)
[15] 范永刚,胡玉昆,李凯辉,于建梅,王鑫.不同干扰对高寒草原群落物种多样性和生物量的影响.干旱区研究,2008,25(4):531-536.
Fan Y G,Hu Y K,Li K H,Yu J M,Wang X.Effects of different disturbances on the diversity and biomass of the phytobiocoenoses in alpine steppes.Arid Zone Research,2008,25(4):531-536.(in Chinese)
[16] 杜军剑,张仕明,李刚.巴音布鲁克草原植被生长气象条件指数变化特征.沙漠与绿洲气象,2014,8(1):45-50.
Du J J,Zhang S M,Li G.The meteorological conditions index variation characteristics of grassland vegetation growth over Bayinbuluke.Desert and Oasis Meteorology,2014,8(1):45-50.(in Chinese)
[17] 柳妍妍,胡玉昆,公延明.高寒草原不同退化阶段土壤颗粒分形特征.水土保持通报,2013,33(5):138-142,184.
Liu Y Y,Hu Y K,Gong Y M.Fractal dimensions of soil particles in different degenerate stages of alpine steppe.Bulletin of Soil and Water Conservation,2013,33(5):138-142,184.(in Chinese)
[18] 房飞,胡玉昆,张伟,公延明,柳妍妍,杨秀娟.高寒草原植物群落种间关系的数量分析.生态学报,2012,32(6):1898-1907.
Fang F,Hu Y K,Zhang W,Gong Y M,Liu Y Y,Yang X J.Numerical anailsis of inter-specfic relationships in alpine steppe community in Bayanbulak.Acta Ecologica Sinica,2012,32(6):1898-1907.(in chinese)
[19] 尹伟,胡玉昆,柳妍妍,公延明,张伟,刘伟,阿德列提·艾列吾塔力甫.巴音布鲁克不同建植期人工草地土壤生物学特性研究.草业学报,2010,19(5):218-226.
Yi W,Hu Y K,Liu Y Y,Gong Y M,Zhang W,Adeliet·Abeutalipu.A study on soil biological properties of artificial grassland over different cultivation times in Bayanbulak.Acta Prataculturae Sinica,2010,19(5):218-226.(in Chinese)
[20] 陈永良,李学斌.基于核函数理论的系统聚类分析.吉林大学学报:地球科学版,2010,40(5):1211-1216.
Chen Y L,Li X B.Kernel-based hierarchical cluster analysis.Journal of Jilin University:Earth Science Edition,2010,40(5):1211-1216.(in chinese)
[21] 乌仁其其格.草甸草原不同退化程度下植被与土壤特征与指示度研究.呼和浩特:内蒙古农业大学博士学位论文,2009.
Wurenqiqige.Studys of the characteristic of vegetation and soil and indication under the different degeneration degree in the meadow steppe.PhD Thesis.Huhhot:Inner Mongolia Agricultucal University,2009.(in Chinese)
[22] 李裕元,邵明安,上官周平,樊军,王丽梅.黄土高原北部紫花苜蓿草地退化过程与植被演替研究.草业学报,2006,15(2):85-92.
Li Y Y,Shao M A,Shangguan Z P,Fan J,Wang L M.Study on the degrading process and vegetation succession ofMedicagosativagrassland in North Loess Plateau, China.Acta Prataculturae Sinica,2006,15(2):85-92.(in Chinese)
[23] 张成霞,南志标.放牧对草地土壤理化特性影响的研究进展.草业学报,2010,19(4):204-211.
Zhang C X,Nan Z B.Research progress on effects of grazing on physical and chemical characteristics of grassland soil.Acta Prataculturae Sinica,2010,19(4):204-211.(in Chinese)
[24] 张佳宁.祁连山北坡高寒草地退化现状及应对策略.草业科学,2014,31(4):776-781.
Zhang J N.Deterioration and strategies for alpine grassland in north slope of Qilian Mountains.Pratacultural Science,2014,31(4):776-781.(in Chinese)
[25] 宗宁,石培礼,蒋婧,宋明华,孟丰收,熊定鹏,张宪洲,沈振西.浅耕对西藏高原退化草甸土壤和植物群落特征的影响.草业科学,2014,31(1):8-14.
Zong N,Shi P L,Jiang J,Song M H,Meng F S,Xiong D P,Zhang X Z,Shen Z X.Eddects of shallow plowing on soil and plant community of degraded alpine meadow in Tibetan plateau.Pratacultural Science,2014,31(1):8-14.(in Chinese)
[26] 刘东霞,卢欣石,李文红.呼伦贝尔退化草地植被演替特征研究.干旱区资源与环境,2008,22(8):103-110.
Liu D X,Lu X S,Li W H.A study on vegetation succession of degradation grassland in Hulunbeier steppe.Joumal of Arid Land Resources and Environment,2008,22(8):103-110.(in Chinese)
[27] 王育松,上官铁梁.关于重要值计算方法的若干问题.山西大学学报:自然科学版,2010,33(2):312-316.
Wang Y S,Shangguan T L.Discussion on calculating method of important values.Journal of Shanxi University:Natural Science Edition,2010,33(2):312-316.(in Chinese)
[28] 王明君,韩国栋,赵萌莉,李海贤.内蒙古呼伦贝尔草甸草原的草地退化等级数量分析.西北植物学报,2007,27(4):4797-4804.
Wang M J,Han G D,Zhao M L,Li H X.Quantitative analysis of degeneration stage of meadow steppe in Hulunbeier,Inner Mongolia.Acta Botanica Boreali-Occidentalia Sinica,2007,27(4):4797-4804.(in Chinese)
[29] 冯秀,仝川,张鲁,苗百岭,丁勇,张远鸣.内蒙古白音锡勒牧场区域尺度草地退化现状评价.自然资源学报,2006,21(4):575-583.
Feng X,Tong C,Zhang L,Miao B L,Ding Y,Zhang Y M.Assessment on grassland degradation at regional-scale in the Baiyinxile Ranch,Inner Mongolia.Journal of Natural Resources,2006,21(4):575-583.(in Chinese)
(责任编辑 王芳)
Division on degraded succession series of alpine grassland in Big Yourdusi Basin
Zhang Ai-ning1, An Sha-zhou1, Xun Qi-lei1, Dong Lei2, Dong Yi-qiang1, Su Qing-he3
(1.The Grassland Science Department of Xinjiang Agricultural University, Urumqi 830052, China;2.The Grassland Workstation in HeJing, Hejing 841300, China;3.The Grassland Workstation in Bayingolin Mongol Autonomous Prefecture, Korla 841000, China)
In the present study, the degraded succession series ofStipapurpureain alpine grassland was classified using system clustering analysis in Yourdusi Bayanbulak, and grassland plant community structures with different degraded level were compared. With the increase of the grassland degradation succession degree, the plants community structure and the dominant position of the main plants obviously changed and the height, coverage, density and the above ground biomass ofS.purpureadecreased. The degradation succession model of alpine grassland in Bayanbulak wereS.purpurea+Koeleria→Leymus+Potentilla→Carex+Pedicularis→Koeleria+Potentilla. The important value ofS.purpureawas as an important index of grassland degradation in Yourdusi Bayanbulak. The similarity between samples from same level was higher while similarity between samples from different levels was lower. Clustering results consistent with various similarity comparison results.
Stipapurpurea; degradation succession; cluster analysis
An Sha-zhou E-mail:xjasz@126.com
10.11829/j.issn.1001-0629.2015-0692
2015-12-04 接受日期:2016-03-14
国家自然科学基金——巴音布鲁克高寒湿地CO2和CH4排放对水分变化的响应(41305136)第一作者:张爱宁(1989-),女,新疆和田人,在读博士生,主要从事草地资源与生态研究。E-mail:zhangaining1206@163.com
安沙舟(1956-),男,陕西富平人,教授,博士,主要从事草地资源与生态研究。E-mail: xjasz@126.com
S812.6+8
A
1001-0629(2016)10-2093-11*
张爱宁,安沙舟,荀其蕾,董磊,董乙强,苏清荷.大尤尔都斯高寒草原退化演替序列的划分.草业科学,2016,33(10):2093-2103.
Zhang A N,An S Z,Xun Q L,Dong L,Dong Y Q,Su Q H.Division on degraded succession series of alpine grassland in Big Yourdusi Basin.Pratacultural Science,2016,33(10):2093-2103.