非对称信息下再制造产品质量控制决策研究
2016-12-06曹华林
曹华林 秦 琼 景 熠
(重庆理工大学,重庆 400054)
非对称信息下再制造产品质量控制决策研究
曹华林 秦 琼 景 熠
(重庆理工大学,重庆 400054)
本文研究了风险中性的单再制造商与单销售商构建的二级闭环供应链模型,基于博弈论和委托代理理论。在不同回收水平下,再制造商都存在单边道德风险,销售商根据影响再制造商质量预防水平的因素来引导再制造商的决策,并制定激励契约来降低再制造商的道德风险,以达到闭环供应链协调的目的。研究表明:回收水平和质量检测水平均影响再制造商的质量预防水平,回收水平同质量预防水平呈正相关,质量检测水平同质量预防水平呈负相关 ;在不同回收水平下,通过销售商质量检测控制后,闭环供应链收益增加,同时求得最优控制水平和最优契约金额 。在最后,通过算例分析验证了契约的有效性。
闭环供应链 委托代理关系 回收水平 质量检测水平 激励契约
引 言
21世纪以来,市场经济的需求多样性和消费者购买力的提升,使得新产品的生命周期快速缩短,废旧产品呈爆炸式增长。对于废旧产品的处理问题引起了企业和消费者的普遍关注,废旧产品价值实现的重要途径之一就是对于废旧产品的再制造。再制造能够把回收产品的可再制造件通过再制造的企业经营模式纳入到环境保护下,还可以通过政府提供的环境保护政策降低企业经营成本,提升品牌形象[1]。鉴于以上背景,在理论与实践研究中再制造都具有重要的研究意义。
目前解决闭环供应链协调问题的有效途径之一,是通过制定契约来达到协调的目的,学者们为此做了大量的研究,主要集中在以下两点:(1)再制造闭环供应链的定价问题。丁雪峰等[2]引入了公平关切因素,并得出在考虑销售商公平关切时,新产品对公平关切因素较敏感,再制造产品对公平关切因素不敏感,并制定数量折扣契约来达到闭环供应链协调的目的,以实现双方帕累托改进。曹晓刚等[3]研究了传统销售渠道和网络销售渠道中消费者的不同需求偏好,建立双渠道下不同节点领导下的动态博弈模型,最后运用价格和利润分享机制达到闭环供应链协调。(2)再制造闭环供应链的非定价问题。非定价问题的研究集中在对突发事件、政府参与、第三方参与条件下的契约协调。王文宾等[4]在除零售商负责回收的情形下,又比较了第三方负责回收的闭环供应链决策模型,研究发现零售商回收努力程度比第三方回收努力程度高,但在零售商负责回收时的加入整体供应链的积极性比第三方回收时的积极性低;零售商负责回收的情形下对消费者有利,第三方负责回收下的产品价格比零售商负责回收的价格更高。
上述再制造闭环供应链的非定价问题研究中,多是关注各节点的增加或者外部客观事件的扰动,而对内生变量考虑较少。除了产品的价格之外,产品的质量则是产品价值的决定性因素,对于产品质量的严格把关显得尤为重要。在非定价问题研究中,应多关注产品质量控制问题。国外对产品质量问题做的研究工作,主要有两个方向:(1)通过设计产品质量契约来协调供应链。De Giovanni[5]引入制造商的质量水平努力因素和销售商的营销水平努力因素,运用最优化原理,求解出企业商誉的最大值。Di等[6]研究供应商为代理人,经销商为委托人时,基于质量努力水平制定激励契约,运用最优解原理,求解出在最优努力水平下供应链整体收益的最大值。国内学者近年来对质量控制问题也进行了一定的研究,黄小原[7]建立了供应链中供应商信息隐匿模型,运用最优控制理论求解到,要使供应链成本降低,从而提高供应链的竞争优势,其中的有利因素是产品质量水平的提高。熊中楷等[8]研究了制造商通过制定对销售商回收的可再制造件质量抽查比例和对不合格可再制造件的质量处罚比例,来引导销售商负责回收的可再制造件的数量和质量,并运用最优化原理,得到最优处罚比例和最优抽检比例。(2)产品质量的道德风险控制。Yaron Yehezkel[9]在非对称信息下二级供应链模型中,研究了道德风险影响下的零售商产品质量决策的变化情况。Charles S.Tapiero[10-12]考虑到供应商、零售商、消费者各节点的风险,并设计了质量风险分享控制模型来协调供应链的质量控制问题。国内学者朱立龙等[13,14]在双边道德风险条件下,分别讨论了生产商和购买商的质量控制决策模型,并运用最优化原理求解出最优分摊比例和折扣额,在仿真计算中验证了质量控制契约的适用性。
综上所述,在再制造闭环供应链的管理中,除了关注各节点的产品定价问题、节点间因价格而引申的利益冲突,更应该关注产品本身决定价格的因素,即产品的质量管理问题。而在质量管理研究中,特别是对闭环供应链的质量管理研究较少涉及。本文把研究供应链的质量管理应用到闭环供应链的质量管理问题上来,通过质量控制解决因各节点利益冲突而导致的闭环供应链效率失调的问题。本文的特点有:(1)构建单再制造商和单销售商的二级闭环供应链模型,引入在双因素影响下,再制造商和销售商各自的期望收益。(2)在销售商质量检测时,考虑到因漏检可能导致销售商的外部成本损失,使其更符合闭环供应链的实际运作。(3)在非对称信息的条件下,运用委托代理理论,求解了在回收水平和销售商质量检测水平两个因素的影响下,销售商进行质量控制前后,各节点的期望收益的变化和闭环供应链最大期望收益,最后通过算例分析进行验证。
1 模型假设与一般描述
1.1 问题描述
我们的模型是由单个再制造商和单个销售商组成的二级闭环供应链系统。各节点属于风险中性,即都追求期望收益最大化。销售商为领导者,再制造商为跟随者。再制造商负责废旧产品的回收和处理、再制造产品质量预防水平投资决策及再制造产品的生产。销售商负责再制造产品的质量检验决策和销售。闭环供应链流程如图1:
图1 闭环供应链流程图
1.2 模型假设
假设1:再制造产品的质量水平是稳定的,不会因为销售商的质量检验而有所改变。
假设2:销售商检验到再制造商的产品有不合格的情况时,不仅该产品做退回处理,还对再制造商处以Δπ的惩罚金额。
假设3:再制造商的质量预防水平不影响销售商的质量检验水平,反之亦然。
假设4:销售商检验到再制造商的产品质量合格时,会对产品进行购买,并最终销售给顾客。当销售商未检验到再制造商的未合格产品而流向市场而产生的外部损失成本E,再制造商和销售商分摊比例β∶(1-β)。
1.3 模型参数描述
(1)新产品生命周期末期,由再制造商负责废旧产品回收,并对其加工成再制造产品,τ=再制造商对产品可再制造件的回收水平。C(τ,θτ)=再制造商的回收成本,θτ是影响再制造商可再制造件回收成本的外生随机变量,设,假设C′τ(τ)>0,C″τ(τ)>0,当τ>0时,且Cτ(0)=C′τ(0)=0,C′τ(1)=∞,再制造商的回收水平为边际成本递增的凸函数。
(2)新产品制造成本c,再制造产品制造成本cr,再制造产品单位节约成本δ=c-cr>0。根据文献[15,16]可得,再制造产品平均制造成本为=c(1-τ)+crτ=c-δτ。
(3)再制造商进行质量投资水平qr投资决策,C(qr,θr)=再制造商的质量投资成本,θr是影响再制造商质量投资成本的外生随机变量,设,假设C′r(τr)>0,C″r(τr)>0,当qr>0时,且Cr(0)=C′r(0)=0,C′r(1)=∞,故质量投资水平成本函数为边际成本递增的凸函数。
(4)再制造商以批发价格wr将再制造产品卖给销售商。
(5)销售商对再制造产品进行质量检查qB决策,C(qB,θB)=销售商的质量检验成本,θr是影响销售商质量检验成本的外生随机变量,设θB~N,假设C′B(τB)>0,C″B(τB)>0,当qB> 0时,且CB(0)=C′B(0)=0,C′B(1)=∞,故质量检测水平成本函数为边际成本递增的凸函数。
(6)销售商以价格p,销售给最终顾客。
1.4 模型建立
再制造商期望收益函数模型:
EΠMr为再制造商的期望收益,β为因不合格产品流入市场,导致发生外部成本损失时,再制造商承担的外部损失比例,β∈[0,1]。
销售商期望收益函数模型:
EΠB为销售商的期望收益,为激励再制造商持续提供再制造产品给销售商,其中销售商所销售的再制造产品引致的外部成本损失要大于销售商对再制造商不合格产品的惩罚成本,即Δπ<(1-β)E。否则子博弈Nash均衡无收货决策。
2 非对称信息条件委托代理模型
在可再制造商进行回收的过程中,回收水平τ为私人信息,可再制造商对再制造产品质量水平投资决策qr也为私人信息,故将可再制造商设为代理人;销售商通过观察可再制造商的回收水平和产品质量投资水平,从而对再制造产品进行质量检测水平qB的决策,是否接受再制造产品,故将销售商设为委托人。
命题1:再制造商为代理人时,存在降低再制造产品质量预防水平的道德风险,其中道德风险的影响因素受到销售商质量检测水平qB和可再制造商回收水平τ的影响。
推论1.1:在再制造商质量预防水平qr为私人信息时,销售商的质量检测水平qB进行质量控制,其qB与qr呈负相关。
推论1.2:在再制造商回收水平τ为私人信息时,销售商的质量检测水平qB为质量控制影响因素,其qB与τ呈负相关。
证明:当信息不对称条件下,对再制造产品质量水平监督,可以委托代理理论来解释,并根据Stanley Baiman在文献[17]的假设,,其中kB,kr,b>0为待定系数。我们建立销售商产品质量检测决策模型:
其中,IR为再制造商的个人理性约束,rMr为保留效用,保证了销售商制定的激励契约不小于再制造商的保留效用,IC为再制造商的激励相容约束,使其保证在质量激励契约下,自身的期望收益最大化。由式(5)对再制造商的产品质量预防水平qr进行一阶偏导,可得:
由式(3)对销售商质量检查水平qB进行一阶偏导得:
由式(9),对qr进行偏导得:
因0<τ<1,所以qB(qr)为单调递减的线性函数。证得推论1.1。
由式(9),对τ进行偏导得:
因0<qr<1,所以qB(τ)为单调递减的线性函数。证得推论1.2。
由式(1)带入式(3)联立,并对qr求一阶偏导得:
由式(12)减去式(7)得:
证得命题1。
命题2:再制造商有为使自身期望收益增加,而降低自身的质量预防水平qr的道德风险。销售商为了达到降低再制造商的单边道德风险的目的,制定激励契约,支付补偿金额为,且补偿金额为再制造商增加收益金额的双倍。
证明:将式(12)、(7)分别带入式(1)、(2),得:
由式(14)、式(15)得:
证得命题2。
3 闭环供应链整体协调分析
在完全信息条件下,再制造商的回收水平τ和再制造产品质量水平投资决策qr为完全信息,销售商制定再制造产品检测水平qB也是完全信息,在完全信息条件下无道德风险问题,故IC(激励相容约束)无作用,我们假设整个闭环供应链为 “虚拟委托人”,建立完全信息博弈模型,即闭环供应链的委托代理模型:
命题3:完全信息条件下,闭环供应链进行整体决策,即销售商进行质量检测水平和回收水平控制后,再制造商的质量预防水平为:;销售商的质量检测水平为:。
证明:由式(17),分别对qB、qr求一阶偏导得:
比较式(22)和式(12)可得:
同理可得:
闭环供应链期望收益:
证明完毕。
4 算例分析
在21世纪,特别是电子产品的淘汰、报废问题日趋严重,很多产品经过回收再制造后以新产品的价格再次销售给顾客,其中对再制造产品的质量控制问题尤为重要。本文选取如下数据:
R公司从市场回收产品部件并进行再制造,B公司从R公司购买再制造件最终销售给顾客。设再制造商R公司的新产品制作成本c=50元/件,进行回收时的回收成本系数b=20元/件,单位节约成本δ=1,进行质量投资的成本系数kr=80元/件,销售商B公司质量检测成本系数kB=80元/件,R公司以wr=180元/件卖给B公司,B公司以p=400元/件卖给顾客,B公司检测到不合格商品时,给与R公司的惩罚金额Δπ=10元/件,当市场发现不合格产品时的外部成本损失为E=80元/件,R公司和B公司的外部损失分摊比例β=0.5。
我们通过实例分析来探讨在不同回收水平的情况下,销售商的质量检测水平与闭环供应链整体收益的关系,这里为了简化模型,把不同回收水平假设为:τ=0.2,0.5,0.8。再进一步分析销售商的质量检测水平对自身收益的影响,对再制造商的质量预防水平的影响,对再制造商收益的影响。
通过式(1)再制造商期望收益函数模型、式(2)销售商期望收益函数模型、式(17)闭环供应链联合期望收益函数、式(23)销售商进行质量控制下的再制造商最优质量预防水平。以上数据我们应用Maple18进行仿真计算。
4.1 质量检测水平和回收水平对质量预防水平的影响
我们比较再制造商质量预防水平qr联合前后,不同回收水平下,销售商质量检测水平qB对于qr的影响,如图2~3所示。
图2 质量控制前的质量预防水平
由图2得出:(1)销售商的质量检测水平提高,再制造商的质量预防水平降低;(2)在不同回收水平下,回收水平越高,再制造商要投入更多的质量预防水平,来保证再制造件的质量控制问题。
图3 质量控制后的质量预防水平
结合图2~3可得:(1)在销售商质量检测水平控制下,不同回收水平中再制造商都会提高质量预防水平。(2)回收水平越高,再制造商的质量预防水平增加额越高,销售商对质量预防水平控制越明显。(3)在销售商质量检测水平提高到1时,质量预防水平降低至0,再制造商不会对质量预防水平进行投资,只进行废旧产品回收和再制造。
4.2 质量检测水平和回收水平对销售商收益的影响
图4 质量控制前的销售商收益
由图4可得:(1)销售商质量检测水平的提高,自身的收益呈 “倒U”型,即先增加再减少,在质量检测水平提高到1时,销售商无利润可言,即当销售商投入的检测水平成本过高,导致自身收益无利润空间,则放弃收购再制造产品。(2)在不同回收水平的情况下,低回收水平下销售商的收益高于高回收水平下销售商的收益。在销售商的期望角度来看,低回收水平收益优于高回收水平收益。
图5 质量控制后的销售商收益
由图5可得:(1)销售商进行质量检测控制后,自身期望收益降低,降低部分作为补偿给再制造商的激励金额。(2)不同回收水平下,回收水平越高,在低质量检测水平时,期望收益差额越大;随着质量检测水平的提高,期望收益差额逐渐缩小;最后销售商的期望收益将趋于0。
结合图4~5,以销售商为领导的闭环供应链中,销售商进行质量检测控制后,销售商拿出自身的期望收益,以激励契约的形式给予再制造商,使再制造商接受销售商的质量检测。在销售商的角度来看,当自身选择低回收水平时,期望收益更高,给予补偿的效果更好。我们选取低回收水平下,销售商进行质量控制前后的期望收益对比,如图6。
图6 低回收水平下的销售商收益
由图6可得:在低回收水平下,销售商进行控制后,期望收益降低。随着质量检测水平的提高,收益最终为0,无利润空间可言,即停止购买再制造产品。在自然状态下,销售商无动机进行控制,为了达到闭环供应链整体最优,由销售商制定激励契约,来激励再制造商接受销售商的质量检测。
4.3 质量检测水平和回收水平对再制造商收益的影响
图7 质量控制前再制造商收益
由图7可得:在销售商进行质量控制前(1)销售商的质量检测水平,在不同回收水平下,都与再制造商收益呈正相关。(2)再制造商在较低的回收水平下呈现较高的收益。
由图8可得:(1)销售商质量控制后,在不同回收水平影响下,再制造商的收益整体都有提高。(2)再制造商的收益呈 “U”型,即销售商增加质量检测水平时,再制造商的收益先降低再提高。(3)在不同回收水平影响下,低回收水平对于再制造商的收益降低效用比高回收水平时更明显,同时质量检测水平最小值也更低。
图8 质量控制后再制造商收益
结合图7、图8,以销售商为领导的闭环供应链中,在低回收水平下,再制造商的收益提高,同时闭环供应链整体收益达到最大值。销售商应激励再制造商接受质量控制,最终实现闭环供应链收益最大化。我们进一步分析,低回收水平情形下,再制造商的最优检测水平qB和最优期望收益EΠMr。
图9 低回收水平下再制造商的收益
由图9得:(1)在销售商低质量检测水平时,再制造商收益增加额较大,随着质量检测水平提高,收益增加额逐渐减少,在qB=0时,无收益差额 EΠMr=49.336元,但随着 qB进一步提高,收益增加额又会出现。(2)在实际工作中,销售商对再制造商进行契约激励,并且激励金额是自身增加收益差额的双倍,使得再制造商有动机接受销售商的质量检测控制。
4.4 质量检测水平和回收水平对闭环供应链整体收益的影响
图10 闭环供应链整体收益
由图10可知,销售商的质量检测水平对闭环供应链的整体收益呈 “倒U”型,整体收益随着质量检测水平的提高先增加,随后降低,从而确定qB有最优解,在不同回收水平的情况下,随着回收水平的提高,闭环供应链的收益降低,最优质量检测水平也在升高,从整体收益的角度上来看,选取低回收水平的情况下,销售商的质量检测水平最优解最低,实现通过低水平的质量控制,即激励再制造商接受质量检测,又达到闭环供应链整体协调状态。故我们选取低回收水平下,来确定销售商的最优检测水平和最优闭环供应链整体收益。
图11 低回收水平下闭环供应链整体收益
5 结 语
在二级闭环供应链的非对称信息条件下,研究再制造产品的质量控制问题。考虑到了再制造商在进行回收时,质量预防水平决策和不同回收水平决策时对质量控制的不同影响。销售商通过对再制造产品进行质量检测,再制造产品合格则接收该产品;进行检测发现再制造产品不合格时,退回该产品,并给予再制造商一定惩罚金额。
在闭环供应链中,存在再制造产品质量信息的不对称问题。其中,作为代理人的再制造商存在降低再制造产品质量预防水平的道德风险,而道德风险的影响因素为销售商的质量检测水平因素和回收水平因素。作为委托人的销售商为了降低再制造商的道德风险,设计激励契约进行再制造产品的质量控制,使再制造商在接受质量控制后的期望收益增加,且再制造商获得的补偿金额是收益增加额的双倍。
我们在非对称信息条件下的二级闭环供应链,针对再制造存在的单边道德风险问题,建立再制造商和销售商的委托代理模型,最后进行仿真计算。从仿真计算中,可以得出:(1)销售商的质量检测水平因素和回收水平因素是再制造商质量预防水平的主要影响因素,再制造商的质量预防水平同质量检测水平呈反比,同回收水平呈正比;销售商进行质量控制后,再制造商的质量预防水平明显提升。且随着回收水平的提高,提升的差额越大。(2)销售商的质量检测水平对自身期望收益的影响是先增加后降低,且在低回收水平下的期望收益最高;对再制造商的期望收益影响是随着质量检测水平的提高而提高,证明了销售商的质量检测水平提高对于可再制造商有正相关的影响。(3)在进行质量控制后,销售商拿出自身部分收益给予再制造商,使得自身期望收益下降,从而再制造商的期望收益增加,激励再制造商接受质量检测,以实现闭环供应链的整体协调。闭环供应链的期望收益呈 “倒U”型,在回收水平τ=0.2的条件下,求得销售商最优质量检测水平,再制造商最优质量预防水平,销售商最优期望收益,再制造商最优期望收益和最优激励金额,闭环供应链最优期望收益。本文的算例分析为实践工作中的闭环供应链的各个节点的企业提供了在质量检测水平控制上的理论指导,对企业的产品质量管理遇到的实际问题,特别是回收产品质量管理具有一定实际指导意义。
我们仅构建了二级闭环供应链的单阶段静态博弈模型,仅解决了再制造商存在的单边道德风险的问题,未对销售商存在的道德风险问题进行讨论。在进一步研究中,会尝试构建二级闭环供应链模型的多阶段动态博弈模型,并考虑在闭环供应链中,加入新节点后的三方动态博弈模型。这也是我们进一步研究的方向。
[1]Johnson M R,Wang M H.Economical Evaluation of Disassembly Operations for Recycling,Remanufacturing and Reuse[J].Int J of Production Research,1998,36(12):3227~3252
[2]丁雪峰,魏芳芳,但斌.零售商公平关切下闭环供应链定价与协调机制 [J].计算机集成制造系统,2014,(6):1471~1480
[3]曹晓刚,郑本荣,闻卉 .考虑顾客偏好的双渠道闭环供应链定价与协调决策 [J].中国管理科学,2015,(6):107~117
[4]王文宾,达庆利 .零售商与第三方回收下闭环供应链回收与定价研究 [J].管理工程学报,2010,(2):130~134
[5]De Giovanni P.Quality Improvement vs.Advertising Support;Which Steategy Works Better for a Manufacturer?[J].European Journal of Operational Research,2011,208(2):119~130
[6]El Ouardighi F,Kogan K.Dynamic Conformance and Design Quality in a Supply Chain:An Assessment of Contracts’Coordinating Power[J].Annals of Operations Research,2013,211(1):137~166
[7]黄小原,卢震 .非对称信息条件下供应链管理质量控制策略[J].东北大学学报,2003,(10):998~1001
[8]熊中楷,曹俊,刘克俊 .基于动态博弈的闭环供应链回收质量控制研究 [J].中国管理科学,2007,(4):42~50
[9]Yehekel Y.Retailer’s Choice of Product Variety and Exclusive Dealing Under Asymmetric Information[J].RAND Journal of Economics,2008,39(1):115~143
[10]Tapiero C S.Consumer Risk and Quality Control in a Collaborative Supply Chain[J].European Journal of Operational Research,2007,182:683~694
[11]Tapiero C S,Kogan K.Risk and Quality Control in Supply Chain:Competitive and Collaborative Approaches[J].Journal of the Operational Research Society,2007,58(11):1440~1448
[12]Tapiero C S,Kogan K.Risk-averse Order Policies with Random Prices in Complete Market and Retailers’Private Information[J]. European Journal of Operational Research,2009,196:594~599
[13]朱立龙,于涛,夏同水.两级供应链产品质量控制契约模型分析 [J].中国管理科学,2013,(1):71~79
[14]朱立龙,夏同水,许可.非对称信息条件下两级供应链产品质量控制策略研究 [J].中国人口・资源与环境,2014,(5):170~176
[15]Savaskan R C,Bhat T S,Wassenhove L N V.Closed-loop Supply Chain Models With Product Manufacturing[J].Management Science,2004,50(2):239~252
[16]Savaskan R C,Wassenhove L N V.Reverse Channel Design:The Case of Competing Retailers[J].Management Science,2006,52(1):1~14
[17]Baiman S,Fischer PE,Rajan MV.Performance Measurement and Design in Supply Chains[J].Management Science,2001,47(1):173~188
Remanufacturing Products Quality Control Strategy Under the Condition of Asymmetric Information
Cao Hualin Qin Qiong Jing Yi
(Chongqing University of Technology,Chongqing 400054,China)
This paper based on game theory and principal-agent theory,studies a risk-neutral remanufacturer and a risk-neutral retailer in the closed-loop supply chain.Under different recovery level,the remanufacturer presents the unilateral moral risk,retailer according the products quality inspection level to guiding remanufacturer’s strategy and making incentive contracts to reducing the unilateral moral risk of remanufacturer for coordinating closed-loop supply chain.The study shows that:recovery level and quality inspection level both has influence on remanufacturing products quality prevention level,recovery level was positively correlated with remanufacturing products quality prevention level and quality inspection level is negatively correlatedwith remanufacturing products quality prevention level.Under different recovery level,after the retailer’s quality control strategy,the closed-loop has significantly improvement.At the same time,we find the optimum solution of control level and incentive contracts cost.In the end,we demonstrate the quality incentive contracts is effective.
closed-loop supply chain;principal-agent theory;recovery level;quality inspection level;incentive contracts
10.3969/j.issn.1004-910X.2016.12.003
F253.3
A
(责任编辑:王 平)
2016—06—25
曹华林,重庆理工大学管理学院副教授,硕士生导师。研究方向 :组织与战略管理。秦琼,重庆理工大学管理学院硕士研究生。研究方向:企业战略与组织管理。景熠,重庆理工大学管理学院副教授,博士。研究方向:组织管理理论与方法。