干旱胁迫与复水对牛鞭草生长发育的补偿效应研究
2016-11-12张卫华靳军英汪明星黄建国
张卫华,靳军英,汪明星,黄建国
(西南大学资源环境学院,重庆400715)
干旱胁迫与复水对牛鞭草生长发育的补偿效应研究
张卫华,靳军英,汪明星,黄建国*
(西南大学资源环境学院,重庆400715)
试验设置正常浇水、轻度、中度和重度干旱4种处理,盆栽研究了牛鞭草干旱胁迫与复水的补偿效应,为其水分管理提供科学依据。结果表明,轻度干旱对牛鞭草生长无显著影响;恢复供水后第12天,牧草产量轻度干旱>正常供水≈中度干旱>重度干旱,轻度干旱的牧草产量比正常供水增加11.47%。在轻度和中度干旱条件下,牛鞭草含氮量显著高于正常供水,复水后第12天与正常供水相似。说明适度干旱后复水不影响甚至提高牛鞭草产量和蛋白质含量。在干旱条件下,牛鞭草根冠比增加,含钾量提高,脯氨酸积累;但硝酸还原酶和根系活力下降,磷、钾吸收量减少,中~重度干旱吸氮量降低。干旱后恢复供水,叶片相对含水量、脯氨酸含量和硝酸还原酶活性迅速恢复正常,叶绿素含量逐渐提高,根系活力在复水12 d时高于正常供水。复水产生的这些生理补偿效应有益于氮素同化,养分吸收和光合作用,使植株恢复正常的新陈代谢和生长发育。在人工栽培牛鞭草的过程中,充分利用这种补偿效应可节约用水,减轻旱害,提高产量品质。
牛鞭草;干旱;复水;补偿效应
干旱是普遍常见的自然现象。在干旱条件下,植物会产生一系列生理生化反应来适应干旱环境,维持生命延续[1]。牛鞭草(Hemarthriacompressa)有二倍,四倍和八倍体,抗旱性因倍体数不同而异[2-3],“广益”牛鞭草比“重高”更加抗旱[4]。Huang等[5]利用隶属函数法综合评价了21份野生牛鞭草的抗旱性,筛选出抗旱性较强的栽培品种。在这些抗旱性较强的品种体内,抗氧化保护酶的活性较高,有益于消除干旱产生的活性氧,降低干旱对细胞膜和细胞器官的破坏作用,增强抗旱性[6-8]。在人工栽培牛鞭草的过程中,增施钾肥可提高抗旱性,降低干旱损失[9]。干旱还能改变牛鞭草叶绿素含量,进而影响光合速率和牧草产量[10]。此外,牛鞭草在干旱条件下,脯氨酸积累,丙二醛增加,细胞膜透性提高[11]。
适度干旱后供水可使植物迅速恢复甚至加快生长,表现出“补偿或超补偿效应”[12-13]。研究表明,在干旱胁迫不超过阈值时,绝大多数农作物均存在不同程度的补偿效应[14],其大小与作物种类、干旱程度和持续时间等密切相关[15]。玉米(Zeamays)、大豆(Glycinemax)和小麦(Triticumaestivum)遭受适度干旱后进行灌溉,株高、叶面积、生物量和经济产量等均可超过正常供水[16-18]。在农业生产中,充分利用补偿或超补偿效应可节约用水,减轻旱害,提高产量品质[19-20]。但是,农作物干旱胁迫与复水补偿效应的研究较多,牧草的有关研究甚少。
牛鞭草抗旱性较强,适口性好、生长迅速、产量较高,广泛种植于三峡库区的坡耕地,面积超过人工种植牧草的一半,既供给牛、羊、兔等草食家畜养殖,又是当地水土保持的首选牧草品种之一[21]。此外,三峡库区是我国水土保持的重点地区之一,属太平洋季风气候,干湿交替频繁,评估干旱和复水对牛鞭草生长发育的影响对于当地草食家畜养殖和水土保持有一定意义。本文以当地普遍种植的扁穗牛鞭草为材料,研究了干旱和复水对生长、养分吸收和有关生理指标的影响,以了解干旱胁迫与复水的补偿效应,为扁穗牛鞭草的节水种植提供理论依据。
1 材料与方法
1.1供试材料
供试土壤为三峡库区典型、具有代表性的灰棕紫泥土,质地中壤,pH 6.91、有机质14.80 g/kg、碱解氮64.61 mg/kg、速效磷8.51 mg/kg、速效钾106.00 mg/kg,最大田间持水量(θf)23.26%。采集耕层土壤,拣去石砾和植株残体等杂物,风干、过2 mm筛备用。供试牧草为“广益”扁穗牛鞭草,采自西南大学畜牧兽医学院牧草基地。
1.2水分胁迫期间的气温变化
图1 水分胁迫期间温室气温的变化状况Fig.1 The daily temperature changes in green house during water stresses
气温与土壤水分蒸发和植株蒸腾密切相关,影响土壤水分含量和植株受旱程度。在水分胁迫期间,温室内的日最高气温36 ℃,仅有2 d低于30 ℃;最低日气温为20~26 ℃,即晚间温度大部分在23 ℃左右波动(图1)。因此,土壤蒸发和植株蒸腾量均较大。
1.3试验设计
试验于2014年6-8月在西南大学资源环境学院温室中进行。取米氏钵(高×直径=22 cm×16 cm),每钵装土4.5 kg,施用2.80 g (NH4)2SO4,1.51 g NH4H2PO4和0.85 g KCl (N∶P2O5∶K2O=1.5∶1.0∶1.0),肥土混匀,插扦20株约7 cm的牛鞭草茎条,用重量法保持土壤含水量(75±1)% θf,成活10 d后每盆留10株长势一致的幼苗,继续培养10 d。
停止浇水使土壤含水量分别下降至(60±1)% θf(轻度干旱,light drought,LD)、(50±1)% θf(中度干旱,medium drought,MD)和(40±1)% θf(重度干旱,heavy drought, HD),保持12 d。然后,灌溉至正常供水的土壤含水量(75±1)% θf,以持续保持正常供水的处理为对照[土壤含水量=(75±1)% θf,CK],重复20次。
1.4测定项目及方法
在干旱处理结束时和恢复供水后4,8 和12 d分别取样,每次取样5盆,测定苗(株)高,并于当日9:00取第一片完全展开叶,分别用丙酮浸提-分光光度法、水合茚三酮比色法、α-萘胺比色法和烘干法分别测定叶绿素、脯氨酸、硝酸还原酶活性和叶片含水量[22-23];另取新鲜根系,用TTC法测根系活力[24]。(80±1) ℃烘干植株,记录地上和地下部生物量。然后,粉碎过0.5 mm筛,称取0.5000 g,用H2SO4-H2O2消化,依次用凯氏法、钒钼黄比色法、火焰光度计法测定消化液中的氮、磷、钾含量[25]。植株养分含量指在单位质量(干基计)的植株体内,所存在的养分量(g/kg);每株植物的养分吸收量(mg/plant)等于植株养分含量×植株生物量[26]。
1.5数据处理
用Excel 2005对试验数据进行基本计算,SPSS 2011软件进行统计分析,显著水平设置为P≤0.05。
2 结果与分析
2.1干旱胁迫与复水对牛鞭草生长的影响
苗(株)高:与对照(正常供水)相比,轻度干旱对牛鞭草苗高无显著影响,中度尤其是重度干旱则显著降低苗高,分别比对照降低13.25%和24.71%。恢复供水后,轻度干旱的苗高显著高于对照;但在中度尤其重度干旱的处理中,苗高仍然显著低于对照(表1)。
牧草产量:干旱胁迫时,牧草产量依次为:对照≈轻度干旱>中度干旱>重度干旱,说明轻度干旱对其产量无明显影响。在恢复供水后的第12天,轻度干旱的牧草产量最高,对照和中度干旱次之(二者无显著差异),重度干旱最低(表1)。
表1 干旱及复水对牛鞭草生长的影响
注:CK:正常供水(对照);LD:轻度干旱;MD:中度干旱;HD:重度干旱。在同一列中,同类测定数值后的不同字母表示处理间差异达显著水平(P<0.05)。下同。
Note: CK:Normal water supply (the control); LD:Light drought; MD:Medium drought; HD:Heavy drought. In each column, data within same index followed by different letters mean significantly different atP<0.05. The same below.
根冠比:随旱情加重,牛鞭草根冠比逐渐提高,重度干旱处理达到0.10。恢复供水后,干旱处理的根冠比逐渐降低,至复水后的第12天,各处理之间无显著差异(表1)。
长势:在轻度干旱条件下,牛鞭草生长正常,与对照无显著差异。在中度尤其是重度干旱条件下,依次出现叶片萎蔫、枯黄,茎部失水、倒伏等现象。恢复供水之后,轻度干旱的牛鞭草生长迅速,逐渐超过对照;在中度干旱的处理中,牛鞭草生长逐渐恢复,很快与对照无显著差异;但在重度干旱的处理中,牛鞭草生长恢复缓慢,在恢复供水后的第12天仍未达到对照的长势。
2.2干旱胁迫与复水对养分含量与吸收量的影响
2.2.1养分含量表2可见,干旱对养分含量的影响因旱情程度和养分种类不同而异。轻度干旱条件下,植株含氮量最高(22.46 g/kg),对照和重度干旱最低(17.57~18.41 g/kg);植株含钾量随旱情加重而提高,重度干旱比正常供水增加7.31%;但干旱处理对磷含量无显著影响。
表2 干旱及复水对牛鞭草植株养分含量和吸收量的影响
随复水时间的延长,牛鞭草植株氮、磷、钾逐渐降低。在恢复供水第12天,各处理间的植株含磷量无显著差异,氮、钾含量随旱情加重而提高。
2.2.2养分吸收量干旱对牛鞭草养分吸收量的影响也因旱情程度和养分种类不同而异。轻度干旱条件下,植株氮吸收量最高,达到115.44 mg/plant,对照次之,重度干旱最低,仅35.94 mg/plant。磷钾吸收量对照最高,随旱情加重而降低(表2)。
恢复供水后,植株氮、磷、钾吸收量均逐渐增加。在恢复供水第12天,干旱处理的植株氮吸收量无显著差异,变化于157.66~176.51 mg/plant之间,但高于对照(128.48 mg/plant);磷吸收量中度干旱的最高,对照最低;钾吸收量中度和重度干旱最高,轻度干旱次之,对照最低(表2)。
2.3干旱胁迫与复水对生理指标的影响
干旱和复水对牛鞭草叶片水分、叶绿素、脯氨酸、硝酸还原酶活性和根系活力的影响见表3。
叶片水分含量:干旱不同程度地降低叶片相对含水量,旱情越重,降幅愈大。恢复供水后叶片含水量迅速上升,恢复供水后第4天,各处理间的叶片相对含水量无显著差异。
叶绿素:干旱胁迫时,牛鞭草叶片叶绿素含量表现为:轻度干旱>对照≈中度干旱>重度干旱,高低相差26.37%。恢复供水后,各处理间差异逐渐缩小,至复水后第12天,各处理间的叶绿素含量无显著差异。
脯氨酸:干旱胁迫时,牛鞭草叶片脯氨酸含量表现为:重度干旱>中度干旱>轻度干旱>对照,高低相差约60倍。恢复供水使干旱处理的脯氨酸含量大幅度迅速降低,至恢复供水后第4天,叶片脯氨酸含量无显著差异。
硝酸还原酶活性:旱情越重,硝酸还原酶活性越低。恢复供水使干旱处理的硝酸还原酶活性迅速上升,至恢复供水后第4天,各处理间的硝酸还原酶活性无显著差异。
根系活力:干旱胁迫时,牛鞭草根系活力表现为:对照>轻度干旱>中度干旱>重度干旱,高低相差约13倍。恢复供水后,CK处理的根系活力无显著变化,干旱处理的持续上升,至恢复供水后第12天,中度干旱>对照≈轻度干旱≈重度干旱。
表3 干旱及复水对牛鞭草部分生理指标的影响
3 讨论
轻度干旱对牛鞭草生长无显著影响,苗高和牧草产量与正常供水相似;中度尤其是重度干旱则抑制牛鞭草生长,牧草产量降低。但是,恢复供水之后,轻度干旱的产量超过正常供水,中度干旱与正常供水相似,只有重度干旱的产量显著降低。说明适度干旱不影响牛鞭草生长,恢复供水产生了“补偿和超补偿效应”,类似玉米、小麦、花生(Arachishypogaea)、大豆等多种农作物对干旱的生长反应和复水补偿效应[27-30]。此外,在轻度和中度干旱条件下,牛鞭草含氮量显著高于正常供水,复水后第12天的含氮量与正常供水相似。众所周知,用H2O2-H2SO4消化测定的含氮量可指示粗蛋白含量[31]。因此,适度减少水分供应和恢复灌溉还有益于提高牛鞭草蛋白质含量,改善品质,产生品质“补偿效应”。因此,在人工栽培牛鞭草的过程中,适度减少水分供应或干湿交替不仅可节约用水,而且还可提高产量品质。在本试验条件下,当土壤含水量≥50% θf时,停止供水12 d对牛鞭草产量品质无显著影响。此外,在三峡库区的自然条件下,频繁出现的短期干旱和干湿交替可能对牛鞭草的生长和产量品质也无显著影响。
在干旱条件下,牛鞭草产生一系列有益于提高抗旱性的生理反应,如根冠比提高,脯氨酸积累,植株含钾量和吸收量增加等,类似前人研究和其他作物[32-34]。根冠比增加,有益于相对减少地上部水分消耗,增加水分和养分吸收。在植物体内,钾呈一价阳离子状态,离子半径小(1.48Å),可吸引2.46个水分子形成水合离子(离子半径2.75Å),是理想的渗透调节物质[35-36]。此外,钾也是70多种酶的激活剂,参与呼吸、光合、物质合成与分解等多种生物化学反应,与植物的能量物质代谢、生长发育和产量品质形成密切相关[37]。干旱条件下,牛鞭草含钾量提高有益于提高渗透压,保持水分,减少蒸腾,稳定植株体内的新陈代谢,增强抗旱性,促进生长恢复[38-39],这可能是牛鞭草适应干旱环境和减轻旱害的生理机制之一。因此,在人工栽培牛鞭草的过程中,增施钾肥可能有益于提高牛鞭草的抗旱性,降低干旱危害。此外,干旱使牛鞭草氮钾含量提高,表现出“浓缩效应”,可能是因为植物生长对干旱环境比氮钾吸收更为敏感所致[40]。值得注意的是,随着叶片相对含水量降低,脯氨酸倍增。脯氨酸不仅参与植物细胞的渗透调节,而且还能解除氨毒,提供能量源,稳定生物大分子结构,中和细胞酸性,调节细胞氧化还原反应[33,41]。在恢复供水后第4天,叶片脯氨酸含量大幅度迅速降低至对照水平,植株生长也同步恢复。看来在干旱条件下,牛鞭草积累脯氨酸的现象可能是有益的[42-43],支持脯氨酸积累是保护性生理反应的观点[9,44]。
在干旱条件下,脱水直接破坏植物体内的蛋白质、细胞和组织结构;所产生的活性氧在分子、亚细胞、细胞、组织和器官等各种水平上对植物造成伤害;酶活性的改变造成物质能量代谢和信号转导紊乱,最终抑制植物生长发育直至死亡[1,45]。在植物体内,硝酸还原酶催化氮素同化的原初反应-NO3-还原成NH3,是植物氮代谢的关键酶之一,其活性高低显著影响硝态氮的吸收利用,以及籽粒产量和蛋白质合成[46];根系活力是根系物质能量代谢的综合反映,与养分吸收密切相关[47-48];在光合作用中,叶绿素参与光能吸收与转化,直接影响光合强度[19]。干旱降低牛鞭草硝酸还原酶活性,根系活力和叶绿素含量,不利于氮素同化,养分吸收,干物质积累,造成生长速率和生物量降低。但是,干旱后恢复供水,叶片水分和脯氨酸含量及硝酸还原酶活性迅速恢复正常,叶绿素含量逐渐提高,干旱处理的根系活力高于正常供水,这些生理变化有益于氮素同化,养分吸收和光合作用,使植株恢复正常的新陈代谢和生长发育,产生补偿或超补偿效应。
总之,适度干旱对牛鞭草生长、品质和养分吸收无显著影响;恢复供水后可产生补偿或超补偿效应。在人工栽培条件下,充分利用这种补偿效应不仅可节约用水,降低干旱危害,而且不影响甚至提高牛鞭草产量品质。
[1]Qu T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135.
[2]Schank S G. Chromosome numbers of eleven newHemarthriaintroductions. Crop Science, 1972, 12: 62.
[3]Quesenberry K H, Oakes A J, Jessop D S. Cytologia and geographical characterization ofHemarthria. Euphytica, 1982, 31(2): 409-416.
[4]Gui S C, Yang F, Zhang B Y,etal. Changes in protective enzyme activities in cells ofHemarthriaconpressaunder water stress. Acta Prataculturae Sinica, 2010, 19(5): 278-282.
[5]Huang L K, Zhang X Q, Xie W G,etal. Evaluation of drought resistance forHemarthriacompressaat seedling stage[C]// 2010: Photonics and Imaging for Agricultural Engineering, 77520C February 04, 2011, doi: 10.1117/12. 886382.
[6]Ji Y, Zhang X Q, Peng Y,etal. Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass. Acta Prataculturae Sinica, 2014, 23(3): 144-151.
[7]Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation ofLespedezadavuricato drought stress and re-watering. Acta Prataculturae Sinica, 2012, 21(2): 51-61.
[8]Li Z, Peng Y, Ma X. Different response on drought tolerance and post-drought recovery between the small-leafed and the large-leafed white clover (TrifoliumrepensL.) associated with antioxidative enzyme protection and lignin metabolism. Acta Physiologiae Plantarum, 2013, 35(1): 213-222.
[9]Jin J Y, Zhang W H, Huang J G. Effects of water stress on growth,nutrition and physiological indices ofHemarthriacompressa. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1545-1550.
[10]Jin J Y, Zhang W H, Yuan L. Physiological responses of three forages to drought stress and evaluation of their drought resistance. Acta Prataculturae Sinica, 2015, 24(10): 157-165.
[11]Chen D Y. The physiological effects of drought stress and rewatering onHemarthriacompressa. Jiangxi Feed, 2011, (2): 12-16.
[12]Messina F J, Durham S L. Trade-off between plant growth and defense? A comparison of sagebrush populations. Oecologia, 2002, 131(1): 43-51.
[13]Hu T T, Kang S Z. The compensatory effect in drought resistance of plants and its application in water-saving agriculture. Acta Ecologica Sinica, 2005, 25(4): 885-891.
[14]Shi J Y, Yuan X F, Ding G J. The reviews of study on water deficit compensation and over-compensation effect for crops. Journal of Mountain Agriculture and Biology, 2000, 19(3): 226-232.
[15]Zhao L Y, Deng X P, Shan L. A review on types and mechanisms of compensation effect of crops under water deficit. Chinese Journal of Applied Ecology, 2004, 15(3): 523-526.
[16]Liu L, Hao W P, Bai Q J,etal. Differential compensatory effects of winter wheat in water stress and re-watering during jointing stage in north China. Journal of Irrigation and Drainage, 2011, 30(2): 37-39.
[17]Bu L D, Zhang R H, Han M M,etal. The physiological mechanism of compensation effect in maize leaf by re-watering after drought stress. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(2): 88-92.
[18]Wang L B, Zu W, Dong S K,etal. Effects of drought stresses and times on compensation effect after re-watering in soybean. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 150-156.
[19]Ristic Z, David D. Chloroplast structure after water and high temperature stress in two lines of maize that differ in endogenous levels of abscises acid. Plant Science, 1992, 153: 186-196.
[20]Hao W P. Influence of Water Stress and Re-watering on Maize WUE and Compensation Effects[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2013.
[21]Xu S, Zhang X Q, Wu Y Q. Review on study and application ofHemarthria. Grassland of China, 2001, 23(4): 53-58.
[22]Zhang X Z. The Research Method of Crop Physiology[M]. Beijing: Chinese Agricultural Press, 1992.
[23]Zhang Z L. Plant Physiology Experiment[M]. Beijing: Higher Education Press, 1990.
[24]Li H S. The Principle and Technology of Plant Physiology and Biochemistry Experiment[M]. Beijing: Higher Education Press, 2000.
[25]Yang J H, Wang C L, Dai H L. Soil Agrochemical Analysis and Environmental Monitoring[M]. Beijing: China Land Press, 2008.
[26]Huang J G. Plant Nutrition[M]. Beijing: Chinese Forestry Press, 2004.
[27]Guo X P, Liu Z P, Wang Q M,etal. Study on photosynthetic compensatory effects of PEG osmotic stress and rewatering on maize. Journal of Hohai University (Natural Science), 2007, 35(3): 286-290.
[28]Chen X Y, Luo Y P. Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat. Acta Agronomica Sinica, 2001, 27(4): 512-516.
[29]Liu J L, Zhao C X, Wu N,etal. Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut. Scientia Agricultura Sinica, 2014, 44(3): 469-476.
[30]Chu L L, Zhang Z X. Effects of nitrogen nutrition and water stress on compensation effect of the yield of soybean. Acta Ecologica Sinica, 2010, 30(10): 2665-2670.
[31]Wang C H, Yang J Q, Dong K H,etal. Effects of different cutting ways on the nutritive value of alfalfa meal. Chinese Journal of Eco-Agriculture, 2004, 12(3): 140-142.
[32]Ge T D, Sui F G, Li J Z,etal. Effects of drought on growth of root and shoot of summer maize. Chinese Agricultural Science Bulletin, 2005, 21(1): 103-109.
[33]Yu L, Wang Y L, Garnett T,etal. Physiological responses of different alfalfa to drought stress. Acta Prataculturae Sinica, 2006, 15(3): 75-85.
[34]Huang J G, Hu D J. The influence of water stress on K+distribution in maize and free proline accumulation in its leaves. Journal of Southwest Agricultural University, 1987, 9(4): 449-453.
[35]Zhou J, Lu X H, Wang Y R,etal. Molecular dynamics study on ionic hydration. Fluid Phase Equilibria, 2002, 194: 257-270.
[36]Li C X, Wang W, Li D Q. Effects of long-term water stress on osmotic adjustment and osmolytes in wheat roots and leaves. Acta Botanica Borealioccidentalia Sinica, 2001, 21(5): 924-930.
[37]Tan J F, Hong J P, Zhao H J,etal. Effects of different potassium application rates on yield, quality and physiological characteristics of dryland winter wheat. Plant Nutrition and Fertilizer Science, 2008, 14(3): 456-462.
[38]Zhang S G, Liu G D, Liu G L. Plant nutrition and drought resistance of crops. Chinese Bulletin of Botany, 2001, 18(1): 64-69.
[39]Kramer P J. Plant and Soil Water Relationships[M]. New York: Mc Graw-Hill, 1969.
[40]Mengel K, Kirkby E A. Principles of Plant Nutrition[M]. Dordrecht: Kluwer Academic Publishers, 2001.
[41]Bohner H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends Biotech, 1996, 14: 89-95.
[42]Hanson A D. Evaluation of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Science, 1977, 17(5): 720-726.
[43]Wang B X, Huang J C, Wang H. The correlation of proline accumulation and drought resistance in various plants under water stress condition. Acta Phytophysiologica Sinica, 1989, 15(1): 46-51.
[44]Jiao R, Liu H B, Liu G S,etal. Discussion of accumulation of proline and its relationship with osmotic stress tolerance of plants. Chinese Agricultural Science Bulletin, 2011, 27(7): 216-221.
[45]Tan X R, Wu X Q, Fu Y,etal. Effects of drought and rewatering on protein damage of wheat seedlings. Journal of Anhui Agricultural Sciences, 2006, 34(16): 4034-4037.
[46]Fan X L, Li L, He W Q,etal. Nitrogen nutrition properties of drought tolerance winter wheat of near isogenic lines. Journal of South China Agricultural University, 1998, 19(4): 50-54.
[47]Han J Q, Wang X F, Zhang Z G. Effects of surface soil drought on root spatial distribution and activity of white clovers. Chinese Agricultural Science Bulletin, 2007, 23(3): 458-461.
[48]Wang N N, Huang M, Chen D W,etal. Effects of water stress on root and yield of rice at different growth stages. Chinese Journal of Tropical Crops, 2013, 34(9): 1650-1656.
[1]曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135.
[4]桂世昌, 杨峰, 张宝艺, 等. 水分胁迫下扁穗牛鞭草根系保护酶活性变化. 草业学报, 2010, 19(5): 278-282.
[6]季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响. 草业学报, 2014, 23(3): 144-151.
[7]杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应. 草业学报, 2012, 21(2): 51-61.
[9]靳军英, 张卫华, 黄建国. 干旱对扁穗牛鞭草生长、营养及生理指标的影响. 植物营养与肥料学报, 2011, 17(6): 1545-1550.
[10]靳军英, 张卫华, 袁玲. 三种牧草对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2015, 24(10): 157-165.
[11]陈东颖. 干旱胁迫及复水对扁穗牛鞭草的生理影响. 江西饲料, 2011, (2): 12-16.
[13]胡田田, 康绍忠. 植物抗旱性中的补偿效应及其在农业节水中的应用. 生态学报, 2005, 25(4): 885-891.
[14]施积炎, 袁小风, 丁贵杰. 作物水分亏缺补偿与超补偿效应的研究现状. 山地农业生物学报, 2000, 19(3): 226-232.
[15]赵丽英, 邓西平, 山仑. 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004, 15(3): 523-526.
[16]刘琳, 郝卫平, 白清俊, 等. 华北冬小麦拔节期水分胁迫-复水补偿效应研究. 灌溉排水学报, 2011, 30(2): 37-39.
[17]卜令驿, 张仁和, 韩苗苗, 等.干旱复水激发玉米叶片补偿效应的生理机制. 西北农业学报, 2009, 18(2): 88-92.
[18]王利彬, 祖伟, 董守坤, 等. 干旱程度及时期对复水后大豆生长和代谢补偿效应的影响. 农业工程学报, 2015, 31(11): 150-156.
[20]郝卫平.干旱复水对玉米水分利用效率及补偿效应影响研究[D]. 北京: 中国农业科学院, 2013.
[21]徐 胜, 张新全, 吴彦奇.牛鞭草研究与应用概况. 中国草地, 2001, 23(4): 53-58.
[22]张宪政. 作物生理研究方法[M]. 北京: 中国农业出版社, 1992.
[23]张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 1990.
[24]李合生.植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[25]杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M].北京: 中国大地出版社, 2008.
[26]黄建国. 植物营养学[M]. 北京: 中国林业出版社, 2004.
[27]郭相平, 刘展鹏, 王青梅, 等. 采用PEG模拟干旱胁迫及复水玉米光合补偿效应. 河海大学学报(自然科学版), 2007, 35(3): 286-290.
[28]陈晓远, 罗远培. 开花期复水对受旱冬小麦的补偿效应研究. 作物学报, 2001, 27(4): 512-516.
[29]吉利, 赵长星, 吴娜, 等. 苗期干旱及复水对花生光合特性及水分利用效率的影响. 中国农业科学, 2014, 44(3): 469-476.
[30]褚丽丽, 张忠学. 氮素营养与水分胁迫对大豆产量补偿效应的影响.生态学报, 2010, 30(10): 2665-2670.
[31]王常慧, 杨建强, 董宽虎, 等. 不同刈割方式对苜蓿草粉营养价值的影响研究. 中国生态农业学报, 2004, 12(3): 140-142.
[32]葛体达, 隋方功, 李金政, 等.干旱对夏玉米根冠生长的影响. 中国农学通报, 2005, 21(1): 103-109.
[33]余玲, 王彦荣, Garnett T, 等. 紫花苜蓿不同品种对干旱胁迫的生理响应. 草业学报, 2006, 15(3): 75-85.
[34]黄建国, 胡笃敬. 干旱对玉米植株K+分布及叶片游离脯氨酸积累的影响. 西南农业大学学报, 1987, 9(4): 449-453.
[36]李春香, 王纬, 李德全. 长期水分胁迫对小麦生育中后期根叶渗透能力、渗透调节物质的影响. 西北植物学报, 2001, 21(5): 924-930.
[37]谭金芳, 洪坚平, 赵会杰, 等. 不同施钾量对旱作冬小麦产量、品质和生理特性的影响. 植物营养与肥料学报, 2008, 14(3): 456-462.
[38]张士功, 刘国栋, 刘更另. 植物营养与作物抗旱性. 植物性通报, 2001, 18(1): 64-69.
[43]王邦锡, 黄久常, 王辉. 不同植物在水分胁迫条件下脯氨酸累积与抗旱性的关系. 植物生理学报, 1989, 15(1): 46-51.
[44]焦蓉, 刘好宝, 刘惯山, 等. 论脯氨酸累积与植物抗渗透胁迫. 中国农学通报, 2011, 27(7): 216-221.
[45]谭晓荣, 吴兴泉, 伏毅, 等. 干旱及复水对小麦幼苗蛋白质损伤的影响. 安徽农业科学, 2006, 34(16): 4034-4037.
[46]樊小林, 李玲, 何文勤, 等. 近等基因系抗旱小麦氮素营养遗传性状的研究. 华南农业大学学报, 1998, 19(4): 50-54.
[47]韩建秋, 王秀峰, 张志国. 表土干旱对白三叶根系分布和根活力的影响. 中国农学通报, 2007, 23(3): 458-461.
[48]汪妮娜, 黄敏, 陈德威, 等. 不同生育期水分胁迫对水稻根系生长及产量的影响. 热带作物学报, 2013, 34(9): 1650-1656.
Compensatory effects of drought stress and rewatering on growth of Hemarthria compressa
ZHANG Wei-Hua, JIN Jun-Ying, WANG Ming-Xing, HUANG Jian-Guo*
College of Resources and Environment, Southwest University, Chongqing 400715, China
The aim of this study was to evaluate the effects of drought stress and compensatory rewatering onHemarthriacompressa, to provide a scientific basis for water management during the cultivation of this plant. Four treatments (normal water supply, light drought, medium drought, and heavy drought) were established in a pot experiment. Light drought did not significantly affect the growth ofH.compressa. On day 12 after rewatering, the four treatments could be ranked, based on the biomass of plants, as follows: light drought>normal water supply≈medium drought>heavy drought. The biomass of plants under light drought was 11.47% greater than that of plants with a normal water supply. Also, the nitrogen content inH.compressawas significantly higher in plants under light and medium drought than in those with a normal water supply, and was similar in control plants and drought-stressed plants on day 12 after rewatering. These results showed that appropriate drought and rewatering barely affected or even improved the yield and protein content ofH.compressa. Drought increased the root/shoot ratio and potassium and proline contents inH.compressa. However, medium and heavy drought led to decreases in nitrate reductase activity, root activity, and phosphorus, potassium, and nitrogen uptake. After rewatering of drought-stressed plants, the relative water content of leaves, proline content, and nitrate reductase activity recovered quickly to levels similar to those in the control, and the chlorophyll content increased gradually. The root activity of drought-treated plants on day 12 after rewatering was significantly higher than that in the control. The recovery of root activity was helpful for nitrogen assimilation, nutrition uptake, and photosynthesis, which restored normal metabolism and growth. These results implied that mild drought and rewatering could not only save water and mitigate drought damage, but also improve the yield and quality of cultivatedH.compressa.
Hemarthriacompressa; drought; rewatering; compensatory effect
10.11686/cyxb2015584
2015-12-31;改回日期:2016-03-25
西南大学博士资金项目(SWU112059)和国家水体污染控制与治理科技重大专项(2012ZX07104-003)资助。
张卫华(1974-),男,河北沙河人,副教授,博士。E-mail:swuwater@126.com
Corresponding author. E-mail:huang99@swu.edu.cn
http://cyxb.lzu.edu.cn
张卫华,靳军英,汪明星,黄建国. 干旱胁迫与复水对牛鞭草生长发育的补偿效应研究. 草业学报, 2016, 25(10): 104-112.
ZHANG Wei-Hua, JIN Jun-Ying, WANG Ming-Xing, HUANG Jian-Guo. Compensatory effects of drought stress and rewatering on growth ofHemarthriacompressa. Acta Prataculturae Sinica, 2016, 25(10): 104-112.