APP下载

类比地学联系地学

2016-10-21范建兵

初中生世界 2016年34期
关键词:结论三角形题目

范建兵

类比地学联系地学

范建兵

类比是学习数学的一种重要的思维方法,“全等三角形”这一章内容里又有哪些类比思想呢?首先,请同学们思考这样一道题目:

图1

例1已知,如图1,以△ABC的边AB、AC为边分别向外作等边△ABD和等边△ACE,BE、DC相交于点O,求证:

(1)BE=DC;(2)∠DOB=60°.

【解析】由于△ABD和△ACE都是等边三角形,所以AB=AD,AE=AC,∠DAB=∠EAC=60°,所以∠BAE=∠DAC,由“SAS”定理可得△BAE≌△DAC,所以BE=DC,∠EBA=∠CDA,再由“8”字形结论可得∠DOB=∠DAB=60°.

这主要考查三角形全等的一种判定方法,条件明显,难度不大,大部分同学能够顺利证明两个结论.下面,再请同学们观察以下两题:

图2

例2已知,如图2,以△ABC的边AB、AC为边分别向外作等腰直角△ABD和等腰直角△ACE,BE、DC相交于点O,求证:(1)BE=DC;(2)BE⊥DC.

图3

例3已知,如图3,以△ABC的边AB、AC为边分别向外作△ABD和△ACE,且AD=AB,AE=AC,∠BAD=∠EAC=α,BE、DC相交于点O,求证:(1)BE=DC;(2)∠DOB=α.

如何解决这两道问题呢?请同学们仔细观察三个题目,并思考:

(1)从条件出发,三道题目有哪些异同点?

(2)从结论出发,三道题目有哪些异同点?

(3)从解题思路出发,解答例2、例3时能否类比例1的解题思路进行思考?它们之间有什么联系?

如果你能够回答上述三个问题,我相信你一定能够解答例2和例3.其实在我们学习全等三角形时,总会遇到一些像这样的“姊妹题”,或形似,或神似,只要我们能够透过现象看本质,不难发现,它们有众多的相通之处.

因此,同学们做几何习题时要常做常思,力争做一题带一类,培养解题感,提高学习效率.可以站在全局的角度,运用已有的数学知识,类比地学,联系地学,将陌生的问题与熟悉的问题进行类比,这样就可以更加系统地掌握数学知识.当然,在反思中,我还发现了一个小窍门噢,如果一道题目里出现两个等边三角形,或两个正方形,或两个等腰直角三角形,或两个等腰三角形,一般都会用“SAS”定理证明全等.

细心的同学,你同意我的观点吗?

(作者单位:江苏省苏州市学府中学)

猜你喜欢

结论三角形题目
由一个简单结论联想到的数论题
立体几何中的一个有用结论
唐朝“高考”的诗歌题目
关于题目的要求
本期练习类题目参考答案及提示
三角形,不扭腰
三角形表演秀
如果没有三角形
画一画
结论