数据流分析法在汽车故障诊断中的应用(上)
2016-09-01江苏赵宝平胡家冬鲍文娟
◆文/江苏 赵宝平 胡家冬 鲍文娟
数据流分析法在汽车故障诊断中的应用(上)
◆文/江苏赵宝平胡家冬鲍文娟
随着汽车及电子技术的发展,汽车制造商为适应时代的需求,汽车电控技术也日益完善。为满足汽车维修人员对故障检修和设定的需要,在汽车电控系统中设置了故障代码和数据流记忆功能,读取故障代码和进行数据流分析成为现代汽车维修人员故障诊断中的首要工作。在汽车维修中,故障现象有不同的解决方法,维修技师也有不同的维修技巧,即使相同的车型,同样的故障现象,所采取的检测诊断方法及思维不一,最终所花费的维修时间与成本也不同,故掌握先进的故障诊断技术,对维修工作将起到事半功倍的效果。本文主要对汽车故障代码和数据流的概念、数据流分析的应用、数据流分析的方法、数据流分析汽车故障的建议和策略作简要介绍。同时,利用数据流分析法排除在工作中所遇到的相关故障案例,希望能够通过本文的阅读使汽车维修人员在工作中起到一定借鉴作用。
一、故障码及数据流概述
1.故障码
当汽车电控系统的相关传感器或执行器以及相关电控线路发生故障时,为便于维修人员对故障的检测与诊断,汽车在设计时生产厂家对重要的传感器与执行器通过电子控制单元(ECU)进行监控,对其故障进行编码,通过点亮仪表盘上的“CHECK”故障报警灯来告知驾驶人员汽车出现了故障,应尽快进行检修或调整。故障代码的输出方式有两种,第一种:通过故障报警灯指示产生相应的代码,1995年以前的老款电控车型采用较多,特点是读取故障代码比较简单,不必使用昂贵的设备和仪器来检测;第二种:通过汽车制造商所提供的专用故障诊断仪(或称为检测电脑)进行故障代码的读取,相比之下第二种方法比较准确和方便。
2.数据流
ECU与传感器和执行器之间交流的数据参数,通过诊断接口(DTC)由通用或专用诊断仪读取的数据称为数据流,可分为静态和动态数据流,数据流只能通过仪器读取。
静态数据流:是指接通点火开关至IG(点火)挡位,但不启动发动机时,利用故障诊断仪读取的发动机电控系统数据。例如:进气压力传感器的静态数据应接近标准大气压力(100~102kPa)、冷却液温度传感器的静态数据在冷车时应接近周围环境温度等。
动态数据流:是指接通点火开关至IG挡位,启动发动机后,利用故障诊断仪读取的发动机运行工况时电控系统数据。这些数据随发动机工况的变化而变化,如进气压力传感器的动态数据随着节气门开度而改变;氧传感器信号电压应在0.1~0.9V之间不断变化等。通过阅读电子控制单元动态数据流,能够了解各种传感器传送到ECU的信号数值,通过与标准数值进行比较,能够快速找出确切的故障部位。
在ECU中增加的数据流记忆功能,真实的反映了传感器和执行器的工作电压和状态,为诊断故障提供了依据。数据流作为ECU的输入及输出数据,使维修人员随时可以了解汽车的工作状况,及时诊断汽车的故障。
二、数据流分析的应用
数据流是ECU对所控制系统控制状态的数量表现形式。数据流分析是运用各种测试手段,对控制系统的各类相关数据进行综合分析的过程,是现代汽车维修故障诊断的基本手段。电脑诊断仪读取的数据流,通过捕捉汽车故障状态下系统运行过程中的异常信号数据,然后对状态数据进行分析,查找真实故障的原因,它对一些偶发或疑难故障诊断会带来意想不到的效果。数据流分析法常用于汽车控制系统的故障诊断,主要应用于偶发性故障诊断、传感器特性变异故障、无故障代码的稳型故障及故障灯不报警但客观存在的故障等。
三、数据流分析的方法
在数据流的众多数据中,有的数据正常,有的不正常,它们之间存在着非常密切的联系,不同车系在相同运行状态下参数值不同,相同车系在不同状态下的数据也各不相同,面对众多的数据需要理清思路,确定故障部位和需要分析的参数组,找准问题的切入点,抓住问题的重要参数。数据流分析的方法有:因果分析法、值域分析法、时域分析法和比较分析法。
1.因果分析法因果分析法是通过研究多个数据之间的因果关系来判断故障,数据之间常表现为一因一果、一因多果、多因多果、多因一果。
2.值域分析法
值域分析法是通过研究某一数据的数值大小和范围变化规律来判断故障,研究的是一维数值的坐标变化。其操作主要是先根据故障码提示数据的数值分析是否超出限值,再分析相关联的数据值。
3.时域分析法
时域分析法研究的是数值的变化频率和变化周期,是某一数据随时间变化规律的动态分析法。
4.比较分析法
比较分析法可以将故障车与无故障车在相同工况下的数据组进行比较分析,也可将故障车的疑损毁部件更换的前、后数据流进行比较分析,从而确定故障点。当然,前提条件是新更换的部件必须处于完好状况(在汽车维修工作中可以这样认为:汽车配件没有新旧之分,只有好坏之分,新的配件买回来未必是完好配件)。
四、应用数据流分析汽车故障的建议和策略
1.克服错误的思维方法
在诊断汽车故障过程中,运用数据流进行电控发动机故障的诊断会带来诸多方便,但要克服下面这种思维方法:分析一组数据,确认一个故障点,若故障没有被排除,又根据下一个数据确定另一个故障点。应当根据故障现象,关注各数据之间的关联度,对有关数据加以组合,力求找出“一因多果”的原因,这样可以省去许多不必要的误判。
2.掌握数据流的分析方法
要更好地利用数据流解决问题,必须充分认识数据流各参数的含义,需要有一定的汽车电控理论基础。汽车维修人员必须掌握电子控制系统传感器和执行器的基本构造工作原理、各元件之间的相互影响等,有了这些理论基础,在查找故障时就会找出问题的主要根源。其次,要清楚实测数据与标准数据之间的单位换算关系,及正常情况下这些数据的标准值,从而进行有效的比较分析。此外,还必须掌握数据流的分析方法,找准切入点,抓住主要矛盾,并做出准确判断。
当我们诊断发动机故障时,借助电脑诊断仪读取ECU存储的故障代码,大多数都能判别出故障发生的原因和部位,所以只要发动机故障报警灯点亮,我们首先应当借助电脑诊断仪读取故障代码并记录下来,然后清除故障代码,重新启动发动机或试车,并再次验证是否存在故障代码,如果仍然存在故障代码,应先排除故障代码所提示的故障。但是在有些情况下,即使发动机电控系统的传感器或执行器已经存在故障,发动机电子控制单元却不会生成和记录故障代码,这是因为电控发动机的相关传感器共用了一个电源或共用一个搭铁线(搭铁点)。例如冷却液温度传感器、进气温度传感器、节气门位置传感器(TPS)、空气流量传感器(MAF)等,均采用由发动机ECU提供的5V参考电源,传感器输送给发动机ECU的信号电压通常在0.1~4.9V范围内,ECU只要接收到传感器在上述范围内的信号电压,都认为传感器是正常的,信号电压也是可靠的,所以发动机ECU内就不会生成和记录故障代码。
虽然有时信号电压在0.1~4.9V的范围内,但传感器可能已经有问题了,其信号电压已失真。因此,仅依靠故障代码来寻找故障,有时也会出现误判,不能确定真正的故障部位。故进行汽车故障诊断时,应综合分析判断,结合故障代码和故障现象来寻找故障部位。有些电控系统出现故障,ECU内并没有记录,不会有故障代码,在遇到这种情况时,最可行的办法就是借助电脑诊断仪读取数据流,分析发动机的静态或动态数据,从而找出故障所在。下面结合平时在工作中所遇到的维修实例,谈一谈数据流分析法在汽车故障诊断中的应用。
五、故障案例
案例1.利用数据流分析法解决瑞风商务车动力不足故障
故障现象:
一辆2006年产HFC6500A1江淮瑞风商务车因动力不足进厂维修,该车搭载韩国现代G4JS 2.4L十六气门多点喷射电控汽油发动机和5速手动变速器,行驶里程数约为154 000km。
故障诊断与排除:
维修人员接车后,首先对该车进行了路试,发现车辆在爬坡或重载时动力明显不足,具体表现为:车辆在坡道起步时,油门踩到底,发动机转速最高达不到1 000r/min,但发动机故障灯并没有报警。
维修人员借助电脑诊断仪对发动机电控系统进行了检测,未发现故障码。读取发动机怠速时数据流(图1、图2),各项数据流分别为:前氧传感器-B1:175.8毫伏;质量空气流量传感器:285.7毫伏;进气温度传感器:87°F;节气门位置传感器:371.1毫伏;蓄电池电压:13.9伏;冷却液温度:203°F;发动机转速:749.9转/分;车速:0miles/h;动力转向开关:关;变速器挡位开关:P/N;发动机负荷:23.1%;喷油持续时间:3毫秒;点火正时:5.5~11.5之间跳变;ISC执行器占空比:36.6%;空调压缩机继电器:关;空/燃比闭环:闭环;长期燃油-B1:5.5%;短期燃油-B1:-0.8%。
图1 发动机怠速时数据流(1)
图2 发动机怠速时数据流(2)
通过怠速数据流观察,各项数据流基本正常,但质量空气流量传感器、节气门位置传感器、发动机负荷、喷油持续时间、点火正时等数值调节有些偏高。
维修人员相继对该车更换了火花塞、点火线圈、燃油泵,清洗了喷油器、节气门阀体,但故障依旧。检查各汽缸压缩压力,各缸压缩压力均能达到1 000kPa及以上,符合技术标准,检查进、排气系统均无堵塞现象。接下来又更换了离合器三件套,故障仍然存在。为此,该厂维修人员对该车故障排除失去了信心,于是打电话向笔者求教。
笔者分析该车动力不足故障可能的原因有:点火线圈及其线路故障、火花塞故障、点火电容器故障、燃油泵及其线路故障(燃油压力不足)、喷油器及其线路故障(喷油器损坏或堵塞)、空气流量传感器及其线路故障、进气歧管压力传感器及其线路故障、节气门位置传感器及其线路故障、发动机机械故障(汽缸压缩压力不足)、汽油滤清器堵塞、进排气系统堵塞、氧传感器故障、正时有误、发动机ECU及其电源故障等。
根据维修人员的叙述,该车发动机唯有正时没有做过检查,没有检查正时的主要原因是由于对这款韩国现代发动机正时装配记号不熟悉,担心拆下后无法再正确安装。该厂维修人员在笔者的电话指导下对该车正时进行拆检。拆下外部皮带、曲轴皮带盘及正时上、下罩盖后,发现正时小皮带(即B带)已经断裂(图3),而正时大皮带(即A带)从外观观察完好,且正时记号均正常。于是,决定同时更换正时A、B带,然后对故障症状再次验证。
图3 已断裂的正时B带
待正时皮带购回后,先安装好正时B带,在安装正时A带曲轴正时齿轮时,发现A带曲轴正时齿轮在曲轴前轴颈上有左、右摆动现象(注:当时工作时间是晚上),即不能与曲轴前轴颈的半圆键进行刚性连接,半圆键及正时A带曲轴正时齿轮内侧槽口均存在磨损严重现象(图4),所以发动机在工作时出现转速信号异常现象,从而影响到发动机点火正时的准确性。因曲轴位置传感器信号盘就安装在A、B带正时齿轮之间,而发动机转速传感器则安装在发动机前罩盖上,并且紧靠信号盘的上方(图5)。
为了保证发动机安全及一次性顺利排除故障,经与车主商量一致后,同时更换了曲轴正时齿轮(A带)、正时皮带(A、B带)、半圆键、张紧轮、张紧器等。正时系统安装完毕后,启动发动机,发动机一次性顺利着车,怠速平稳,加速顺畅,对该车进行反复路试,故障症状彻底消失。再次读取发动机怠速时的数据流,各项数据流分别为:前氧传感器-B1:0~900毫伏之间变化;质量空气流量传感器:263~273毫伏之间变化;进气温度传感器:89°F;节气门位置传感器:314毫伏;蓄电池电压:13.9伏;冷却液温度:205°F;发动机转速:749.9转/分;车速:0miles/h;动力转向开关:关;变速器挡位开关:P/N;发动机负荷:17.8%;喷油持续时间:2.3毫秒;点火正时:6.5~9.5之间变化;ISC执行器占空比:37.8%;空调压缩机继电器:关;空/燃比闭环:闭环;长期燃油、短期燃油均在±8%以内。通过观察,各项数据流基本恢复原厂规定数值。
图4 严重磨损的半圆键及A带正时齿轮
图5 曲轴位置传感器安装位置
维修小结:
该车动力不足的原因主要是由于曲轴正时齿轮(A带)及信号盘定位的半圆键人为因素没有安装到位,导致正时齿轮及信号盘在曲轴上不能正确定位,从而造成曲轴位置传感器信号盘及正时齿轮(A带)的内侧槽口异常磨损并加大,在曲轴运转时左右摆动,发动机转速信号异常导致发动机正时有误,往往这类故障发动机ECU存储器内并不能生成故障代码,通过数据流检查也不能发现故障所在,故需拆检正时系统进行仔细检查才能确认故障位置。用于定位曲轴正时齿轮(A带)及信号盘的半圆键在曲轴上的原始图片见图6所示,明显存在安装问题,外侧低,内侧高。
图6 半圆键安装位置
另外,曲轴位置传感器(也称为发动机转速传感器)信号盘内侧明显有与正时B带摩擦的痕迹(图7),由于曲轴位置传感器信号盘在运转时产生摆动及自身的变形才会摩擦到正时B带,导致B带异常损坏。通常情况下是由于维修人员为了方便,在更换正时B带时,没有按要求拆下正时齿轮(A带)及曲轴位置传感器信号盘,强行将正时B带安装上去,导致曲轴位置传感器信号盘变形。
图7 曲轴位置传感器信号盘
在非专营店经常会遇到此类现象,归根结底是非专营店维修人员不了解相关操作流程,没有接受过系统培训,故在工作中经常出现蛮干现象导致的。(未完待续,备注:课题编码“金肯职业技术学院:2015—JG1★”,课题名称:数据流分析法在汽车故障诊断中的应用)