草本层66个种对中,达到显著和极显著联结的种对5个,其中极显著正联结1个,显著正联结1个,显著负联结3个;不显著联结的种对数为61个,其中正联结32个,占总对数的52.46%,负联结24个,占39.34%,无联结5个,占8.20%。分析结果显示,草本层呈现出弱的正联结性,与总体种间联结性检验的方差比率VR值的结果一致。
有研究表明,应用方差比率法对优势种群间的总体联结性进行检验,再以χ2检验为基础,结合PC、AC等值进行分析,能达到较好的效果(刘金福等,2001;邓贤兰等,2003;史作民等,2011)。这些方法依赖于种存在与否的二元数据,其测定结果受研究的尺度(样方大小)、取样方法(数目多少)影响较大(王伯荪和卢泽愚,1981;王伯荪和彭少麟,1985)。本文先用方差比率法对优势种进行总体联结性分析,再运用χ2统计数阵、共同出现百分率(PC)、联结系数AC对种对间的联结性进行测定,发现,AC值和PC值虽能反映种间联结性的相对强弱,但当两个种都存在于所有的样方中的情况下(锈毛梭子果、广东琼楠),统计量及联结系数AC无法计算。张金屯(2004)的研究表明,在这种情况下,我们就要使用数量数据,比如多度、盖度等,一般通过计算种间相关系数来衡量两种间的相关程度。种间联结性与物种的生物学特性、生态适应性等因素有关,其测定值只是说明竞争的结果或现状,不能揭示其原因及过程。
![](https://img.fx361.cc/images/2023/0315/b1800a43458c71f2ab2bc284d9614b429d742fa3.webp)
图 1 乔木层优势种群种间联结性半矩阵图 a. PC值; b. AC值。 种序号:1. 大叶栎; 2. 锈毛梭子果; 3. 鹿角锥; 4. 尖连蕊茶; 5. 木姜子; 6. 罗浮锥; 7. 鸭公树; 8. 广东琼楠; 9. 环鳞烟斗柯; 10. 桂南木莲; 11. 柠檬金花茶; 12. 海南山龙眼; 13. 腺叶桂樱; 14. 白背桐; 15. 桃叶珊瑚; 16. 革叶算盘子; 17. 青藤公。Fig. 1 Semi-matrix figure of interspecific association of dominant tree populations Note: a. PC values; b. AC values. Species codes: 1. Quercus griffithii; 2. Eberhardtia aurata; 3. Castanopsis lamontii; 4. Camellia cuspidata; 5. Litsea pungens; 6. Castanopsis faberi; 7. Neolitsea chuii; 8. Beilschmiedia fordii; 9. Lithocarpus corneus; 10. Manglietia chingii; 11. Camellia limonia; 12. Helicia hainanensis; 13. Laurocerasus phaeosticta; 14. Mallotus apelta; 15. Aucuba chinensis; 16. Glochidion daltonii; 17. Ficus langkokensis.
![](https://img.fx361.cc/images/2023/0315/65fbfba162bb0f33af5eea59df6d6b4dd7d902c8.webp)
1—21.76—32.68—4.4449.00—0.460.0050.45—2.341.041.0460.76—0.164.640.851.017———————80.29—0.000.070.070.200.65—90.07—0.886.250.001.040.38—0.07100.76—3.400.380.381.010.46—0.650.38116.51—3.404.640.380.061.47—0.650.380.46122.68—4.4414.11.564.174.64—1.191.560.384.64132.68—0.886.250.001.0413.6—0.071.560.854.646.25142.43—2.344.170.002.785.11—2.431.040.061.014.179.38150.02—0.110.450.201.192.53—0.020.450.051.330.450.451.19161.14—0.110.203.171.191.33—1.140.208.771.330.451.690.030.0017
注:1. 大叶栎; 2. 锈毛梭子果; 3. 鹿角锥; 4. 尖连蕊茶; 5. 木姜子; 6. 罗浮锥; 7. 鸭公树; 8. 广东琼楠; 9. 环鳞烟斗柯; 10. 桂南木莲; 11. 柠檬金花茶; 12. 海南山龙眼; 13. 腺叶桂樱; 14. 白背桐; 15. 桃叶珊瑚; 16. 革叶算盘子; 17. 青藤公。
Note: 1.Quercusgriffithii; 2.Eberhardtiaaurata; 3.Castanopsislamontii; 4.Camelliacuspidata; 5.Litseapungens; 6.Castanopsisfaberi; 7.Neolitseachuii; 8.Beilschmiediafordii; 9.Lithocarpuscorneus; 10.Manglietiachingii; 11.Camellialimonia; 12.Heliciahainanensis; 13.Laurocerasusphaeosticta; 14.Mallotusapelta; 15.Aucubachinensis; 16.Glochidiondaltonii; 17.Ficuslangkokensis.
![](https://img.fx361.cc/images/2023/0315/8fa6f6f8c152f54792a60fcb6dcf41e9b8e1d7af.webp)
表 5 灌木层优势种群χ2检验数据半矩阵Table 5 Semi-matrix table of χ2 value of dominated shrub populations
注:1. 大叶栎; 2. 菝葜; 3. 海南山龙眼; 4. 锈毛梭子果; 5. 尖连蕊茶; 6. 柠檬金花茶; 7. 鸭公树; 8. 桃叶珊瑚。
Note: 1.Quercusgriffithii; 2.Smilaxchina; 3.Heliciahainanensis; 4.Eberhardtiaaurata; 5.Camelliacuspidata; 6.Camellialimonia; 7.Neolitseachuii; 8.Aucubachinensis.
4 讨论与结论
4.1 优势种群的总体联结
总体上优势种群具有正联结反映了群落具有较强的稳定性(杨一川,1994;杜道林,1995;邓贤兰等,2003)。本研究对大青山天然次生林优势种群间的总体联结性分析结果表明,乔木层群落总体上的正联结程度达到显著水平;灌木层群落总体上的负联结程度不显著;草本层群落总体上的正联结程度不显著。说明,乔木优势种群对所处的综合生长环境有着相似的反应,生态位在一定程度上出现重叠,乔木群落具有一定的稳定性,并且这种稳定性将随着演替的进行得到逐步加强;但林下的灌草层种间联结关系松散,暗示灌草层还处于不稳定的演替阶段,物种有一定的独立性,种类和数量均处于波动的状态。
![](https://img.fx361.cc/images/2023/0315/b056cbf81c435efc3d96c0472588e966ddd8a0b0.webp)
图 2 灌木层优势种群种间联结性半矩阵图 a. PC值; b. AC值。 种序号:1. 大叶栎; 2. 菝葜; 3. 海南山龙眼; 4. 锈毛梭子果; 5. 尖连蕊茶; 6. 柠檬金花茶; 7. 鸭公树; 8. 桃叶珊瑚。Fig. 2 Semi-matrix figure of interspecific association of dominated shrub populations Note: a. PC values; b. AC values. Species codes: 1. Quercus griffithii; 2. Smilax china; 3. Helicia hainanensis; 4. Eberhardtia aurata; 5. Camellia cuspidata; 6. Camellia limonia; 7.Neolitsea chuii; 8. Aucuba chinensis.
![](https://img.fx361.cc/images/2023/0315/1f7c572550e8ad7f50b98312a850687e650d8a98.webp)
10.9621.850.0732.681.471.8940.260.360.690.2051.562.160.120.531.0460.820.340.760.684.913.9071.850.072.330.230.691.420.0080.410.105.470.003.170.530.011.9990.490.990.624.580.183.710.170.010.05100.260.163.520.200.001.040.650.698.380.18110.333.110.670.111.971.791.650.670.500.010.0512
种序号: 1. 阔片短肠蕨; 2. 楼梯草; 3. 高秆珍珠茅; 4. 扁柄沿阶草; 5. 苦竹; 6. 广西省藤; 7. 华山姜; 8. 镰羽贯众; 9. 灰绿耳蕨; 10. 蜘蛛抱蛋; 11. 短穗鱼尾葵; 12. 狭翅巢蕨。
Species codes: 1. Allantodia matthewii; 2. Elatostema involucratum; 3. Scleria terrestris; 4. Ophiopogon compressus; 5. Pleioblastus amarus; 6. Calamus guangxiensis; 7. Alpinia chinensis; 8. Cyrtomium balansae; 9. Polystichum eximium; 10. Aspidistra elatior; 11. Caryota mitis; 12. Neottopteris antrophyoides.
![](https://img.fx361.cc/images/2023/0315/b0653e92c9cf6bde5aba80f3d3674e64268b7935.webp)
图 3 草本层优势种群种间联结性半矩阵图 a. PC值; b. AC值。 种序号: 1. 阔片短肠蕨; 2. 楼梯草; 3. 高秆珍珠茅; 4. 扁柄沿阶草; 5. 苦竹; 6. 广西省藤; 7. 华山姜; 8. 镰羽贯众; 9. 灰绿耳蕨; 10. 蜘蛛抱蛋; 11. 短穗鱼尾葵; 12. 狭翅巢蕨。Fig. 3 Semi-matrix figure of interspecific association of dominated herb populations a. PC value; b. AC value. Species codes: 1. Allantodia matthewii; 2. Elatostema involucratum; 3. Scleria terrestris; 4. Ophiopogon compressus; 5. Pleioblastus amarus; 6. Calamus guangxiensis; 7. Alpinia chinensis; 8. Cyrtomium balansae; 9. Polystichum eximium; 10. Aspidistra elatior; 11. Caryota mitis; 12. Neottopteris antrophyoides.
这种联结的松散性可能与大青山天然次生林目前的发展阶段及物种本身的生态学特性有关,调查发现,大青山天然次生林林下灌木和草本的种类、数量、分布范围均不及乔木树种,其物种间相遇的概率较低。今后可加强对种间联结性内在机制及物种与环境之间的耦合关系等方面的研究,进一步从物种生态适应性及生态位、群落结构与动态方面深入了解群落的总体联结性。
4.2 优势种群种对间的联结性
优势种群间的联结性分析,可看出种群间的相互作用及群落组成的动态。植物之间存在直接或间接的相互影响(周先叶等,2000),正联结表明种对间存在至少对一方有利的作用,负联结表明种对间存在至少不利于一方的相互作用机制(许涵等,2008)。两个物种的正联结程度越高说明它们所需的生长环境条件越相似;反之则表明对生长环境条件的需求有所不同(王伯荪和彭少麟,1985)。在同一环境条件下,正的联结,可能在某种程度上指示相互作用的存在对一方或双方种是有利的,例如互惠共生或资源划分方面的互补;负的联结,可能表明不利于一方或双方的相互作用,例如种间竞争、干扰(蒋有绪,1979)。竞争只是生物进化过程中出现的阶段性现象,生物进化的发展方向终将是生物与生物之间以及生物与环境之间的协同(王德利和高莹,2005)。许多研究认为,一个种对相关性大,是因为它们具有相似的生物学特性和生态适应性,对环境的适应能力、对资源利用能力、对群落所起的功能作用等均有一致性,因此,它们的关系应该是稳定的(张金屯和焦蓉,2003;Greig-Smith,1983)。植物群落内物种间的种间关系与该群落所处的演替阶段密切相关,在群落的演替初期,物种间尚未形成一定的种间关系;演替中期,物种间主要表现为竞争关系;群落演替到达中生阶段时,物种间的关系较为复杂,群落内部处于同一层次的物种由于对生长环境需求相似而表现出种间联结(周先叶等,2000;Halton & Peters,2003)。种间联结程度与生态位重叠值之间是密切相关的,种间正联结程度越高,生态位重叠程度也越高(彭少麟和王伯荪,1990)。
在生长环境及竞争一致的条件下,具有相同或相似生态习性的物种往往共同出现在同一群落中,其种间联结性一般表现为显著的正相关,这在前人的研究中得到了验证(邓贤兰等,2003;邓福英和臧润国,2007),本研究结果进一步证实了这一规律。例如,乔木层具有显著正联结性的种对由尖连蕊茶、腺叶桂樱、白背桐、鸭公树、海南山龙眼等乔木中下层植物组成,这些种一般生于林内潮湿环境内,它们对生境和资源要求有一定的相似性,具有一定的耐荫性,它们之间的显著正联结暗示它们具有较大的生态位重叠;木姜子与白背桐、桂南木莲、桃叶珊瑚、尖连蕊茶、白背桐与青藤公5个种对相互独立,它们的生态位重叠度也较小,可能是由于它们对环境具有不同的生态适应性或相互分离的生态位所致,这与其生态习性有关,如木姜子喜光,而尖连蕊茶、桃叶珊瑚性喜温暖湿润的气候环境,耐荫性强。
相对于乔木层,灌草层的联结性则表现出松散及较弱的特性。由于研究区域的生态环境变化并不大,灌木层中具有较大重要值的物种多为上层乔木的优势种的幼苗,个体数量并不大,且他们在研究区域的分布具有一定的随机性,具有较强联结性的种都是具有较大个体数及频度的乔木层幼苗,故其联结性也较大。例如,大叶栎与海南山龙眼、锈毛梭子果、尖连蕊茶及海南山龙眼与锈毛梭子果、尖连蕊茶组成的5个种对有较强的联结性。草本层一般居于林下,一般都呈现聚集分布,容易受到林分内小环境的影响,如土壤、水分、郁闭度等的变化都会引起其个体数、种类及分布的变化,因此,草本层的种间联结性呈现较弱联结性可能是物种对生境的不同偏好或相异的生物学特性所致。例如,高杆珍珠茅与灰绿耳蕨、短穗鱼尾葵,苦竹和华山姜、狭翅巢蕨、短穗鱼尾葵五个种对表现出相互独立的特点。所以,灌草层之间总体的联结性较松散是符合实际的。
通过上述分析表明,大青山天然次生林植物群落乔木树种间具有较强的正联结性,大多数乔木树种的种间联结性较紧密;主要灌木树种的种间联结性较松散,草本层主要种间表现为弱联结性。物种生态习性、群落演替阶段等因素可能是造成这一特性的主要原因。大青山天然次生林乔木层的建群种大叶栎、锈毛梭子果、鹿角锥及其伴生种尖连蕊茶、鸭公树之间存在较强的联结性,它们的个体数及频度都较大,群落中尚未存在具更强的竞争潜力的物种,群落处于较稳定的发展阶段,预示着这些种群将在一定时期内占据并主导大青山天然次生林整个群落的演替方向。未来应加强对其自然环境的管理和保护,如果有必要,可适度人工干预,促进天然次生林的演替。大叶栎在大青山天然次生林中占据优势,野外调查时发现,大叶栎母株下的幼苗个体数量较多,自然更新良好,暗示该种群具有较好的自我更新能力,在群落中具有一定的稳定性且处于动态的发展阶段之中,正在不断更新。因此,大叶栎是该地区人工林树种选择上一个值得考虑的物种。
COC GW (Translated by JIANG YX), 1979. Methods in plant ecology [M]. Beijing: Science Press:76-103. [COC GW(JIANG YX, transl, 1979. 普通生态学实验手册 [M]. 北京:科学出版社]
DENG FY, ZANG RG, 2007 . The identification of functional groups in a secondary tropical montane rain forest of Hainan Island, south China [J]. Acta Ecol Sin, 27: 3 240-3 249. [邓福英, 臧润国, 2007 . 海南岛热带山地雨林天然次生林的功能群划分 [J]. 植物生态学报, 27: 3 240-3 249.]DENG XL, LIU YC,WU Y, 2003. Interconnection among dominant plant populations ofCastanopsiscommunity in Jinggang Mountain Nature Reserve [J]. Acta Phytoecol Sin, 27:531-536. [邓贤兰, 刘玉成,吴杨, 2003. 井冈山自然保护区栲属群落优势种群的种间联结关系研究 [J]. 植物生态学报, 27:531-536.]
DICE LR, 1945. Measures of the amount of ecologic association between species [J]. Ecol, 26(3): 297-302.DU DL,LIU YC,LI R, 1995. Studies on the interspecific association of dominant species in a subtropicalCastanopsisfargesiiforest of Jinyun Mountain, China [J]. Acta Phytoecol Sin,19(2) :149-157. [杜道林,刘玉成,李睿, 1995. 缙云山亚热带栲树林优势种群间联结性研究 [J]. 植物生态学报 ,19(2) :149-157.]
DU RQ, 1999. Biostatistics [M]. Beijing: Higher Education Press. [杜荣骞, 1999. 生物统计学 [M]. 北京:高等教育出版社.]
GREIG-SMITH P, 1983. Quantitative plant ecology [M]. Orlando: University of California Press.
GUO ZH, ZHUO ZD, CHEN J,et al, 1997. Interspecific association of treesin mixed evergreen and deciduous broad-leaved forestin Lushan Mountain [J]. Acta Phytoecol Sin, 21:424-432. [郭志华, 卓正大, 陈洁,等, 1997. 庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究 [J]. 植物生态学报, 21:424-432.]
HALTON A, PETERS,2003. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests [J]. Ecol Lett, 2003, 6: 757-765.
HUANG CB,LU LH,WEN YG,et al, 2011. Vertical distribution of main meteorological elements in Daqingshan forest zone of Guangxi [J]. Guizhou Agric Sci ,(1):90-95. [黄承标,卢立华,温远光,等, 2011. 大青山林区不同海拔高度主要气象要素的变化 [J]. 贵州农业科学,(01):90-95.]KANG B,LIU SR,CAI DX, et al, 2009. Effects ofPinusmassonianaplantation stand density on under story vegetation and soil properties [J]. Chin J Appl Ecol,(10):2 323-2 331. [康冰,刘世荣,蔡道雄, 等, 2009. 马尾松人工林林分密度对林下植被及土壤性质的影响 [J]. 应用生态学报,(10):2 323-2 331.]
KANG B,LIU SR,CAI DX, et al,2010. Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area [J]. Chin J Appl Ecol, (10):2 479-2 486. [康冰,刘世荣,蔡道雄, 等,2010. 南亚热带不同植被恢复模式下土壤理化性质 [J]. 应用生态学报, (10):2 479-2 486.]
KANG B,LIU SR,WEN YG,et al, 2006. Population dynamics during succession of secondary natural forest in Daqingshan,Guangxi,China [J]. J Plant Ecol, (06):931-940. [康冰,刘世荣,温远光,等, 2006. 广西大青山南亚热带次生林演替过程的种群动态 [J]. 植物生态学报, (06):931-940.]
KANG B,2007. Vegetation characteristics of degraded forest and ecological restoration in Daqingshan, Guangxi [D]. Yangling: Northwest A & F University,2007. [康冰,2007. 广西大青山退化森林植被特征及生态恢复研究 [D]. 杨凌:西北农林科技大学,2007.]
LIU JF, HONG W, FAN HB,et al, 2001. Study on the interspecific association of species in the vegetation layer inCastanopsiskawakamiiforest [J]. Sci Silv Sin, 37:117-123. [刘金福, 洪伟, 樊后保,等, 2001. 天然格氏栲林乔木层种群种间关联性研究 [J]. 林业科学, 37:117-123.]
MING AG,ZHANG ZJ,ZHAN HH, et al, 2013. Effects of thinning on the biomass and carbon storage inPinusmassonianaPlantation [J]. Sci Silv Sin, (10):1-6. [明安刚,张治军,谌红辉, 等, 2013. 抚育间伐对马尾松人工林生物量与碳贮量的影响 [J]. 林业科学, (10):1-6.]
PENG SL ,WANG BS,1990. Studies on dominant species niche overlapping of the forest community in Dinghushan [M]. Study on the forest ecosystem in subtropical and tropical, 6:19-27. [彭少麟 ,王伯荪,1990. 鼎湖山森林群落优势种群生态位重叠研究 [M]. 热带亚热带森林生态系统研究, 6:19-27.]
SCHLUTER D, 1984. A variance test for detecting species associations, with some example applications [J]. Ecology, 65(3): 998-1 005.
SONG YC, 2001. Vegetation ecology [M]. Shanghai: East China Normal University Press. [宋永昌, 2001. 植被生态学 [M]. 上海:华东师范大学出版社.]WANG BS, PENG SL, 1985. Studies on the measuring techniques of interspecific association of the lower subtropical evergreen-broadleaved forest. The exploration and the revision on the measuring formulas of interspecific association [J]. Acta Phytoecol Geobot Sin,(4):274-285. [王伯荪, 彭少麟, 1985. 南亚热带常绿阔叶林种间联结测定技术研究——Ⅰ. 种间联结测式的探讨与修正 [J]. 植物生态学与地植物学丛刊,(4):274-285.]
WANG BS,LI MG,PENG SL, 1989. Acta populations [M]. Guangzhou: Sun Yat-Sen University Press. [王伯荪,李明光,彭少麟, 1989. 植物种群学 [M]. 广州:中山大学出版社.]WANG DL,GAO Y, 2005. Competitive evolution and coevolution [J]. Chin J Ecol,(10):1 182-1 186. [王德利,高莹, 2005. 竞争进化与协同进化 [J]. 生态学杂志 ,(10):1 182-1 186.]XU H,HUANG JX,TANG GD,et al, 2008. Interspecific associations of dominant trees in communities withTsoongiodendronodorumon Nankunshan [J]. J S Chin Agric Univ,(01):57-62. [许涵,黄久香,唐光大,等, 2008. 南昆山观光木所在群落优势树种的种间联结性 [J]. 华南农业大学学报,(01):57-62.]
ZHANG JT,2004. Quantitative ecology [M]. Beijing: Science Press: 100. [张金屯,2004. 数量生态学 [M]. 北京:科学出版社: 100.]
ZHANG JT, JIAO R, 2003. Interspecific association between woody plants in Shenweigou of Guandi Mountains, Shanxi Province [J]. Bull Bot Res, 23: 458-463. [张金屯,焦蓉, 2003. 关帝山神尾沟森林群落木本植物种间联结性与相关性研究 [J]. 植物研究, 23: 458-463.]
ZHOU JL, 1992. Acta population ecology [M]. Beijing: High Education Press. [周纪纶, 1992. 植物种群生态学 [M]. 北京:高等教育出版社.]
ZHOU XY, WANG BS, LI MG,et al, 2000. An analysis of interspecific associations in secondary succession forest communities in Heishiding Nature Reserve, Guangdong Province [J]. Acta Phytoecol Sin, 24:332-339. [周先叶, 王伯荪,李鸣光,等, 2000. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析 [J]. 植物生态学报, 24:332-339.]
Interspecific associations between south subtropical forest plant community species in Daqingshan of Guangxi
NONG You1,2, ZHENG Lu1,2, JIA Hong-Yan1,2, LU Li-Hua1,2, MING An-Gang1,2
( 1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China;2.GuangxiYouyiguanForestEcosystemResearchStation, Pingxiang 532600, China )
The natural secondary forest in Southwest Guangxi is rich in typical forest communities; however, little is known about the inter specific associations of the dominate species. Hence, our objective was to investigate how the dominant species in the communities interact with each other. We sampled 1 km2in the natural secondary forest, selected 17 tree species, 8 shrub species and 12 herb species according to importance values and studied inter specific associations by using variance ratio (VR) analysis andχ2-tests, percentage co-occurrence(PC) and association coefficient (AC). There was a significant positive correlation of overall association among trees, an insignificant negative correlation among shrubs, and an insignificant positive correlation among herbs.χ2-tests showed that there was a positive association for 81 pairs and a negative association for 19 pairs and 5 pairs did not have a relationship among trees. There was a positive association for 14 pairs and a negative association for 12 pairs and 2 pairs did not have a relationship among shrubs. A positive association was found for 32 pairs and a negative association for 24 pairs and 5 pairs did not show a relationship among herbs. The main tree species were connected more closely whereas main shrub species association was loose and main herb species association is weak. The main causes for different associations were assumed to be ecological habits, community succession stage among others. In the future,the management and protection of the natural environment should be more strengthen,if necessary,manual intervention may be appropriate in order to promote the natural secondary forest succession. The research will provide the information only for understanding the current situation and trends in its plant community succession,but also for the future research on its plant community succession regular and the protection of its species diversity.
Daqingshan, dominate species, interspecific association, natural secondary forest, south subtropical
10.11931/guihaia.gxzw201405048
2014-07-18
2014-09-10
国家“十二五”农村领域科技计划项目(2012BAD22B0105);中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2012001)[Supported by National Science and Technology Project of “12th Five-Year” in Rural Areas (2012BAD22B0105); Central Public-interest Scientific Institution Basal Research Fund (CAFYBB2012001)]。
农友(1987- ),男(壮族),广西龙州人,硕士,助理工程师,森林生态学专业,(E-mail)imnongyou@163.com。
Q948.1
A
1000-3142(2016)07-0848-11
农友,郑路,贾宏炎,等. 广西大青山南亚热带森林植物群落的种间联结性 [J]. 广西植物,2016,36(7):848-858
NONG Y,ZHENG L,JIA HY,et al. Interspecific associations between south subtropical forest plant community species in Daqingshan of Guangxi [J]. Guihaia,2016,36(7):848-858