优化问题1:
(11)
(12)
(13)
γ-γ1>0
(14)
(15)
(16)
证明:对式(11)应用Schur补定理[19]可得
Δx(k|k)TPΔx(k|k)≤γ
(17)
本文引入辅助矩阵G来提高控制器设计自由度,降低保守性[20],根据文献[21]有G+GT-Q≤GTQ-1G成立,则式(12)和(13)可分别写为式(18)和(19)
(18)
(19)
将式(18)两边乘以λ1,式(19)两边乘以λj,j=2,3,4,并将两式左右分别相加可得:
n= 1,...,20 (20)
(22)
式(22)两边同时乘以γ,Δx(k+i|k)T和Δx(k+i|k),令P=γQ-1,K=YG-1,H=ZG-1,则有
||AnΔx(k+i|k)+BnΔu(k+i|k)||P-
(23)
式(23)保证了Lyapunov函数递减,进而结合式(17)可知,Z={Δx(k+i|k)|Δx(k+i|k)TPΔx(k+i|k)≤γ}可作为模型(8)的不变集[8],且该不变集包含原点。
(24)
(25)
(26)
对式(25)和(26)应用Schur补定理可得:
(27)
(28)
令Hl=ZlG-1,P=γQ-1,并对式(27)和(28)分别左乘diag{I,GT}和右乘diag{I,G},可得
(29)
(30)
又因为G+GT-Q≤GTQ-1G,则有式(15)和(16)成立。此外,若k时刻存在可行解,则该解对于k+i,i≥0时刻仍然可行[8],使得闭环系统稳定。
4 仿真
为验证本文控制器的有效性,对饱和条件下的高超声速飞行器纵向运动模型进行仿真。飞行参考点取为hr=26243.28m,Vr=2423.16m/s,αr=0.782°,θr=0.782°,qr=0,δer=10.627,Φcr=0.215,初始点取为h0=26060.40m,V0=2286.00m/s,α0=0.844°,θ0=0.844°,q0=0,输入饱和约束的上下界值分别为δemin=-30°,δemax=30°;Φcmin=0,Φcmax=1.5。
首先进行多胞LPV建模,然后选取合适的矩阵ψ,σ和权重调节参数β,设计饱和RMPC控制器。并将其与文献[8]中的经典约束RMPC以及常规无约束RMPC进行对比,仿真结果如图1~7所示。
图1 舵偏角
图2 空气当量比
图3 高度
图4 速度
图5 攻角
图6 俯仰角
图7 俯仰速率
从图1和2可以看出,饱和RMPC与经典约束RMPC[8]均能保证输入满足给定的饱和限制,而常规无约束RMPC控制器使得系统输入幅值过大,严重超过飞行器执行机构物理约束范围。由图3和4可知,与经典约束RMPC[8]相比,本文的饱和RMPC控制器设计方法保守性相对较低,高度超调量较小,速度上升较快,系统能够相对较快地到达参考点。图5~7分别表示了攻角α、俯仰角θ和俯仰速率q变化曲线,无约束RMPC下的状态变量变化幅值过大。而本文饱和RMPC下的α和θ略大于经典约束RMPC[8]方法,这是因为前者的控制量相对于后者较大,但总体变化仍然合理,到达稳态较快。综上分析,本文提出的饱和RMPC控制器是有效的,具有良好的稳定性和控制性能,实现了二者的兼顾。
5 结论
针对带有输入饱和的高超声速飞行器纵向运动模型,提出了一种饱和RMPC控制器设计方法。利用雅克比线性化以及张量积模型转换方法实现了非线性模型的线性化,建立了多胞LPV系统,并通过构造实际与辅助状态反馈律,设计了饱和RMPC控制器,其中辅助矩阵的引入一定程度上降低了控制器的保守性,使得系统既满足实际输入饱和限制,又实现了飞行器快速稳定的控制性能,为抗饱和控制方法研究提供了新的思路。
[1] 王明昊, 刘刚, 赵树涛, 等.高超声速飞行器的LPV变增益状态反馈H∞控制 [J].宇航学报, 2013, 34(4): 488-495.(Wang Minghao, Liu Gang, Zhao Shupeng, et al. Variable gain state feedbackH∞control for hypersonic vehicle based on LPV [J]. Journal of Astronautics, 2013, 34(4): 488-495.)
[2] Sun C Y, Huang Y Q, Qian C S, et al. On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method [J]. Frontiers of Electrical and Electronic Engineering, 2012, 7(1): 56-68.
[3] 秦伟伟, 郑志强, 刘刚, 等.高超声速飞行器的LPV鲁棒变增益控制 [J].系统工程与电子技术, 2011, 33(6): 1327-1331.(Qin Weiwei, Zheng Zhiqiang, Liu Gang, et al. Robust variable gain control for hypersonic vehicles based on LPV [J]. Systems Engineering and Electronics, 2011, 33(6): 1327-1331.)
[4] Hu T S, Lin Z L. Control systems with actuator saturation: analysis and design [M].Boston: Birkhäuser, 2001.
[5] Xu B, Wang S, Gao D X, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators [J]. Journal of Intelligent and Robotic Systems, 2014, 73(1-4): 233-247.
[6] Huang X L, Ge D M. Robust and anti-windup control of air-breathing hypersonic cruise vehicle [C]. 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, 2010, 1515-1520.
[7] 席裕庚, 李德伟, 林姝.模型预测控制-现状与挑战 [J].自动化学报, 2013, 39(3): 222-236.(Xi Yugeng, Li Dewei, Lin Shu. Model predictive control-status and challenges [J]. Acta Automatica Sinica, 2013, 39(3): 222-236.)
[8] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities [J]. Automatica, 1996, 32(10): 1361-1379.
[9] Qin W W, Zheng Z Q, Zhang L, et al. Robust model predictive control for hypersonic vehicle based on LPV [C]. Proceedings of the IEEE International Conference on Information and Automation, Changsha, 2010, 1012-1017.
[10] Cao Y Y, Lin Z L. Min-max MPC algorithm for LPV systems subject to input saturation [J]. IEE Proceedings: Control Theory and Applications, 2005, 152(3): 266-272.
[11] Huang H, Li D W, Lin Z L, et al. An improved robust model predictive control design in the presence of actuator saturation [J]. Automatica, 2011, 47(4): 861-864.
[12] 程路, 姜长生, 文杰, 等.近空间飞行器飞/推一体化模糊自适应广义预测控制[J].系统工程与电子技术, 2011, 33(1): 127-0133.
[13] Gao G, Wang J Z. Reference command tracking control for an air-breathing hypersonic vehicle with parametric uncertainties [J]. Journal of the Franklin Institute, 2013, 350(5): 1155-1188.
[14] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869.
[15] 吴森堂, 费玉华.飞行控制系统[M].北京航空航天大学出版社, 2005.
[16] Petres Z. Polytopic decomposition of linear parameter-varying models by tensor-product model transformation [D]. Budapest, Hungary: University of Technology and Economics, 2006.
[17] Lathauwer L, Moor B, Vandewalle J. A multi-linear singular value decomposition [J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1253-1278.
[18] Shi T, Su H Y, Chu J. An improved model predictive control for uncertain systems with input saturation [J]. Journal of the Franklin Institute, 2013, 350(9): 2757-2768.
[19] 俞立.鲁棒控制—线性矩阵不等式处理方法 [M]. 北京: 清华大学出版社, 2002.(Yu Li. Robust control—Linear matrix inequality approach [M].Beijing: Tsinghua University Press, 2002.)
[20] Wada N, Saito K, Saeki M. Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(12): 1446-1450.
[21] Daafouz J, Bernussou J. Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J]. Systems & Control Letters, 2001, 43(5): 355-359.
Input Saturation Control Based on RMPC for Hypersonic Vehicles
Hu Chaofang, Ren Yanli, Xie Qianqian
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
Arobustmodelpredictivecontroller(RMPC)designmethodisproposedforthenonlinearlongitudinaldynamicmodelofthehypersonicvehiclewithinputsaturation.Thepoly-topiclinearparametervarying(LPV)modelofthevehiclecanbeobtainedbyusingJacobianlinearizationandtensor-product(TP)modeltransformationapproach.Basedonthismodel,thesaturatedRMPCcontrollerisdesigned,whichisbasedontheconvexhullconstructedbytheactualandauxiliarystatefeedbacklawstoreplacetheinputsaturation,andtheauxiliarymatrixisintroducedtodecreasetheconservatismofthecontroller.Thelinearmatrixinequality(LMI)isusedtosolvethecontroller.Thecontrolperformanceandstabilityoftheclose-loopsystemareguaranteed.TheeffectivenessoftheproposedmethodisdemonstratedbycomparingwithotherRMPCcontrollerssimulation.
Hypersonicvehicle;Inputsaturation;Robustmodelpredictivecontrol;Tensor-product;Linearparametervaryingmodel
*天津市自然科学基金项目(12JCZDJC30300); 国家留学基金
2015-08-27
胡超芳(1973-),男,河北保定人,副教授,主要从事预测控制、飞行器优化与控制等研究;任艳丽(1991-),女,山西吕梁人,硕士研究生,主要从事鲁棒预测控制研究;解倩倩(1990-),女,河北沧州人,硕士研究生,主要从事鲁棒预测控制研究 。
TP273
A
1006-3242(2016)02-0020-07