APP下载

水热法制备纳米Bi2Te3的反应机理

2016-08-04周丽娜

上海电机学院学报 2016年3期
关键词:水热法

周丽娜

(上海电机学院 机械学院, 上海 201306)



水热法制备纳米Bi2Te3的反应机理

周丽娜

(上海电机学院 机械学院, 上海 201306)

摘要实验调整水热合成纳米Bi2Te3的反应物添加过程,研究了Bi2Te3的反应机理。结果表明,尽管改变反应先后顺序可得到不同的中间产物,但均可被强还原剂快速还原为单质,而后期单质原子结合生成Bi2Te3的速率相对缓慢。因此,Bi2Te3的生长机制不受影响,均能得到Bi2Te3纳米颗粒和纳米棒。

关键词Bi2Te3; 纳米颗粒; 水热法; 反应机理

热电材料可实现热能与电能的直接转换,是非常优异的新能源材料。衡量其热电转换效率的标准是热电优值ZT(ZT=S2σT/κ)。优秀的热电材料同时需要高的Seebeck系数(S)、电导率(σ)和低的热导率(κ),但往往很难实现。近年来的研究表明,利用纳米技术可有效提高材料的ZT值。因为,由熔体旋甩[1-2]、球磨[3-5]、化学合成[6-10]和原位析出等[11-12]方法制备的纳米颗粒,在后期烧结而成的块体材料中,会转变为形态各异的纳米晶粒,并促使生成了大量的不同类型的界面。晶粒的微观结构[13],晶粒内的化学成份偏析[14]、亚稳相的存在[15]和应力[16-18]、点缺陷中填充原子的种类和浓度[19-22],以及晶界尺寸[23],界面处第二相的析出[24-25]、位错的密度[26-27]等因素,均能改变声子的散射机制,进而降低材料的晶格热导率。同时,纳米块体材料仍能保持较高的Seebeck系数和电导率,从而提高了ZT值。

Bi2Te3及其固溶体合金是室温区域最优秀的热电材料。为进一步提高其热电性能,人们尝试过许多方法来改进合成工艺以得到产量高、微观形貌可控的纳米Bi2Te3。区别于其他化学制备方法,水热法制备纳米Bi2Te3,工艺简单,溶剂选择随处可取的水,价格低廉,且得到的产物形貌多样,特别适合未来大规模的商业生产。本文通过改变水热法制备纳米Bi2Te3中反应物的添加顺序,研究纳米Bi2Te3的生长机理,为得到高热电性能的Bi2Te3纳米块体材料做铺垫。

1实验方法

1.1水热法制备Bi2Te3纳米粉末

使用的药品有: 碲粉(原料为Te块,在玛瑙研钵中研细,过200目筛后使用)、BiCl3、NaOH、乙二胺四乙酸二钠盐(EDTA),NaBH4和NaOH。以上反应物均为分析纯。反应装置如图1所示。

图1 实验装置示意图Fig.1 Schematic of experimental setup

反应实验在水溶液中进行,温度为100℃,反应时间为2d。按照摩尔比Bi∶Te=2∶3的比例精确称量碲粉和氯化铋,设计的反应物的添加步骤如下:

(1) Te+NaOH→NaBH4→EDTA→BiCl3

(2) Te+NaOH→EDTA+BiCl3→NaBH4

反应结束后,离心、洗涤和烘干样品。

1.2Bi2Te3的物性表征

采用Rigaku D/MAX-2550P型X射线衍射仪(X-Ray Diffractions, XRD)对样品的物相定性和半定量分析。采用HITACH S-4800型场发射扫描电镜(Field Emission Scanning Electron Microscopy, FESEM)观察样品的表面形貌。应用Phillips CM200型透射电镜(Transmission Electron Microscopes, TEM)观察材料的微观形貌。

2结果与讨论

按步骤(1)操作,将碲粉加入NaOH水溶液中,沸腾无法将碲粉搅拌均匀,颗粒较大的会沉于瓶底,较小的则形成灰黑色的悬浮液。当溶液中加入NaBH4粉末后,水溶液立即变为紫红色溶胶。再将EDTA溶于其中,溶解完毕后,最后加入BiCl3粉末,此时溶液迅速变黑。为研究步骤(1)的反应过程,重复上述实验以获得紫红色的溶胶。将溶胶剧烈搅拌,长时间加热,观察到溶液的紫红色逐步褪去,并沉淀出黑色粉末。将此黑色粉末制样,其测试的XRD图谱(见图2)分析表明,为Te单质。

图2 Te纳米颗粒的XRD图Fig.2 XRD patterns of Te nanoparticles

使用SEM观察Te单质的微观形貌(图 3(a)),发现Te为一维纳米材料,直径为100~600nm左右。透射电镜照片(图3(b)~(d))表明,这些纳米Te主要为纳米棒,也能观察到纳米管(图3(d))。研究表明[28],Te的一维纳米材料的微观形貌主要受其浓度的控制。当Te浓度高时,易生长为纳米管;反之,则易生长为纳米棒。最后,当加入BiCl3粉末后,溶液迅速变黑,这是由于体系中快速还原出了Bi单质[29]。

图3 Te纳米颗粒的微观形貌图Fig.3 Microstructure of Te nanoparticles

区别于步骤(1),在步骤(2)中,当添加完BiCl3粉末后,则得到乳白色悬浮液,这是由铋盐的水解得到不溶于水的产物而产生的。当添加NaBH4粉末后,溶液迅速变黑。将上述两种方法得到的样品制样,收集其X射线粉末衍射图谱,如图4所示。

图4 步骤(1)和步骤(2)的Bi2Te3的XRD图Fig.4 XRD patterns of Bi2Te3 for process (1) and (2)

两组实验最终产物的XRD衍射峰均与碲化铋的标准图谱(PDF82-0358)相对应,无其他杂质峰。因此,产物均为Bi2Te3。

结合上述实验现象及数据认为,Bi2Te3的生成主要包含两个过程: ① 得到还原出的Bi与Te纳米颗粒;② Bi与Te纳米颗粒结合生成Bi2Te3。其中,Bi的生成包含BiCl3的水解和水解产物被还原两个步骤:

(1)

(2)

Te粉的还原过程为

(3)

Bi2Te3的生成过程为

(4)并且,两组实验得到的产物Bi2Te3不仅化学组分一样,微观形貌也一致: 每一组样品中均含有细小的纳米颗粒和一维的纳米棒。如图5(a)、(b)所示,纳米颗粒形状不规则,粒径在20~60nm之间,透射电镜照片(见5(a))显示出Bi2Te3颗粒不同衬度的随机分布,代表其堆积和附着也是随机的。这些特征在样品的扫描电镜图(见5(b))中看得更为直观,这些纳米晶主要呈现片状,其片层厚度不超过10nm,然后无规则地团聚和分布。片状晶粒的生成主要是因为,Bi2Te3晶体中除大量存在的共价键外,还有作用力较弱的范德华力,使得Bi2Te3晶体沿a和b轴的生长速率快于c轴。

图5 Bi2Te3纳米颗粒的微观形貌图Fig.5 Microstructure of Bi2Te3 nanoparticles

除此之外,两组实验均得到Bi2Te3纳米棒,如图6(a)和(b)所示,直径在10~50nm,长度可至数μm。一般,其周围附着有纳米晶粒,如图6(a)所示。此图中单分散的纳米晶则是由于电子束长时间照射此纳米棒而溅射形成,不属于原样品。图6(b)显示,Bi2Te3纳米棒表面由许多更加细小的纳米颗粒形成。推测,这些Bi2Te3纳米晶体可能是以上述一维的Te纳米棒为母体生长而成的: 溶液中大量存在着一维的Te,Bi原子扩散至纳米碲棒表面,在活化点生成Bi2Te3分子。反应继续进行,形成Bi2Te3晶核,晶核长大生成如图6所示的纳米颗粒。

图6 Bi2Te3纳米颗粒棒的微观形貌图Fig.6 Microstructure of Bi2Te3 nanorods

在实验中还使用了还原剂NaBH4,标准状况下,电极电势为

可将许多金属化合物还原为单质。在进行步骤(1)和(2)时也能观察到,两种反应顺序里,当添加完NaBH4后,体系迅速变紫或变黑。这一实验现象还表明,NaBH4参与的氧化还原反应的速率是很快的。相反,在一个大气压下,反应温度为100℃时,为获取纯度较高的纳米Bi2Te3,水热法的制备时间至少要2d。若缩短其反应时间,杂质的含量将增加,不利于得到高热电转换效率的块体材料。也有学者提出,可提高反应温度和反应压力[30],即使用密闭的反应釜取代玻璃容器,此时,高纯度的纳米Bi2Te3的获取,仍然需要至少24h。上文已指出,水热法合成Bi2Te3主要分两步进行,相对于后期较为缓慢的Bi与Te原子的合成反应,早期的还原出Bi与Te原子的反应迅速。尽管络合剂EDTA的加入顺序不同,可能会有不同类型的含Bi的络合物生成[31-32],但均能被迅速还原。因此,反应物的添加顺序不同,不会改变后期Bi2Te3晶核的形成和长大的速率,进而不影响产物的生成和最终的微观形貌。

3结论

改变水热法中Te粉、BiCl3、NaBH4、EDTA 、NaOH等反应物的添加顺序,研究纳米Bi2Te3的生长机理。结果发现,反应物添加顺序改变,生成的中间产物不同,但均可被NaBH4快速还原为单质,而后期Bi与Te结合生成Bi2Te3的速率较为缓慢,不影响Bi2Te3晶核的形成和长大,因而不改变纳米Bi2Te3的生长机制。

参考文献

[1]XIE Wenjie,WANG Shanyu,ZHU Song,et al.High performance Bi2Te3nanocomposites prepared by single-element-melt-spinning spark-plasma sintering [J].Journal of Materials Science,2013,48(7): 2745-2760.

[2]ZHAO Wenyu,WEI Ping,ZHANG Qingjie,et al.Multi-localization transport behaviour in bulk thermoelectric materials [J].Nature Communications,2015,6: 6197.

[3]ROGL G,GRYTSIV A,HEINRICH P,et al.New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx(X = Ge,Sn) reaching ZT > 1.3 [J].Acta Materialia,2015,91: 227-238.

[4]ROGL G,GRYTSIV A,ROGL P,et al.Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6,respectively [J].Acta Materialia,2014,76: 434-448.

[5]LEE P Y,CHEN T C,HUANG J Y,et al.Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing [J].Journal of Alloys and Compounds,2014,615: S476-S481.

[6]ZHANG G,YU Q,LI X.Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures[J].Dalton Transactions,2010,39(4): 993-1004.

[7]ZHOU Lina,ZHANG Xiaobin,ZHAO Xiaobing,et al.Synthesis and characterization of carbon nanotube supported Bi2Te3nanocrystals [J].Journal of Alloys and Compounds,2010,502(2): 329-332.

[8]ZHANG Gengqiang,YU Qingxuan,LI Xiaoguang,et al.Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder [J].Applied Physics A,2004,80(7): 1567-1571.

[9]WANG Zhong,WANG Fuqiang,CHEN Hui,et al.Synthesis and characterization of Bi2Te3nanotubes by a hydrothermal method [J].Journal of Alloys and Compounds,2010,492(1): L50-L3.

[10]SALAVATI-NIASARI M,BAZARGANIPOUR M,DAVAR F.Hydrothermal preparation and characterization of based-alloy Bi2Te3nanostructure with different morphology [J].Journal of Alloys and Compounds,2010,489(2): 530-534.

[11]DING Juan,GU Hui,QIU Pengfei,et al.Creation of Yb2O3Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites [J].Journal of Electronic Materials,2013,42(3): 382-388.

[12]ZHAO X Y,SHI Xun,CHEN Lindong,et al.Synthesis of YbyCo4Sb12/Yb2O3composites and their thermoelectric properties [J].Applied Physics Letters,2006(9): 2121-0921.

[13]BELLANGER P,GORSSE S,BERNARD-GRANGER G,et al.Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si,Sn) thermoelectric alloys: An experimental and modeling approach [J].Acta Materialia,2015,95: 102-110.

[14]MENG Xianfu,CAI Wei,LIU Zihang,et al.Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition [J].Acta Materialia,2015,98: 405-415.

[15]LI Jianhui,TAN Qing,LI Jingfu,et al.BiSbTe-Based Nanocomposites with High ZT : The Effect of SiC Nanodispersion on Thermoelectric Properties [J].Advanced Functional Materials,2013,23(35): 4317-4323.

[16]XU Y,LI G.Strain effect analysis on the thermoelectric figure of merit in n-type Si/Ge nanocomposites.Journal of Applied Physics,2012,111(5): 054318.

[17]LUO Xin,SULLIVAN MB,QUEK S Y.First-principles investigations of the atomic,electronic,and thermoelectric properties of equilibrium and strained Bi2Se3and Bi2Te3including van der Waals interactions [J].Physical Review B,2012,86(18): 184111.

[18]XU Bin,LONG Congguo,WANG Yusheng,et al.First-principles investigation of electronic structure and transport properties of the filled skutterudite LaFe4Sb12under different pressures [J].Chemical Physics Letters,2012,529: 45-48.

[19]SHI Xun,YANG Jiong,SALVADOR J R,et al.Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports [J].Journal of the American Chemical Society,2011,133(20): 7837-7846.

[20]ZHOU Lina,QIU Pengfei,UHER C,et al.Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12double-filled skutterudites [J].Intermetallics,2013,32: 209-213.

[21]XI Lili,QIU Yuting,ZHENG Shan,et al.Complex doping of group 13 elements In and Ga in caged skutterudite CoSb3[J].Acta Materialia,2015,85: 112-121.

[22]QIU Yuting,XI Lili,SHI Xun,et al.Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites [J].Advanced Functional Materials,2013,23(25): 3194-3203.

[23]COCEMASOV A I,NIKA D L,FOMIN V M,et al.Phonon-engineered thermal transport in Si wires with constant and periodically modulated cross-sections: A crossover between nano- and microscale regimes [J].Applied Physics Letters,2015,107(1): 011904.

[24]XIONG Zhen,CHEN Xihong,HUANG Xiangyang,et al.High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J].Acta Materialia,2010,58(11): 3995-4002.

[25]LI Han,TANG Xinfeng,SU Xiali,et al.Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+ybulk materials with nanostructure [J].Applied Physics Letters,2008,92(20): 202114.

[26]ROGL G,GRYTSIV A,ROGL P,et al.Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12[J].Acta Materialia,2013,61(18): 6778-6789.

[27]ROGL G,SETMAN D,SCHAFLER E,et al.High-pressure torsion,a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation [J].Acta Materialia,2012,60(5): 2146-2157.

[28]MAYERS B,XIA Y N.Formation of Tellurium nanotubes through concentration depletion at the surfaces of seeds [J].Advanced Materials,2002,14(4): 279-282.

[29]ZHOU Lina,ZHANG Xiaobin,ZHAO Xinbing,et al.Influence of NaOH on the synthesis of Bi2Te3via a low-temperature aqueous chemical method [J].Journal of Materials Science,2009,44(13): 3528-3532.

[30]ZHANG Y H,ZHU Tiejun,TU Jiangping,et al.Flower-like nanostructure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3based alloys[J].Materials Chemistry and Physics,2007,103(2): 484-488.

[31]BERDONOSOV P S,DOLGIKH V A,LIGHTFOOT P.The crystal structure of a new bismuth tellurium oxychloride Bi0.87Te2O4.9Cl0.87from neutron powder diffraction data.Journal of Solid State Chemistry,2007,180(5): 1533-1537.

[32]CHEN Xiangying,HYUN H S,LEE S W.Controlled synthesis of bismuth oxo nanoscale crystals(BiOCl,Bi12O17C12,alpha-Bi2O3,and(BiO)(2)CO3) by solution-phase methods.Journal of Solid State Chemistry,2007,180(9): 2510-2516.

收稿日期:2016-03-31

基金项目:上海高校青年教师培养计划项目资助(ZZSDJ13033);上海高校教师培养计划产学研践习项目资助

作者简介:周丽娜(1981-),女,讲师,博士,主要研究方向为纳米能源材料,E-mail: zhouln@sdju.edu.cn

文章编号2095-0020(2016)03-0129-05

中图分类号TB 383.02

文献标识码A

Reaction Mechanism of Bi2Te3Nanoparticles Synthesized Using Hydrothermal Method

ZHOULina

(School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China)

AbstractThe reaction mechanism of Bi2Te3 nanoparticles synthesized with a hydrothermal method was studied by changing the reactants sequence. It was found that strong reductant could reduce all intermediate products to elementary substances in different processes. This rapid redox reaction had little influence on the process of Bi2Te3 growth of which the reaction rate was much lower. Thus, the reaction mechanism of Bi2Te3 nanoparticles was not changed. The products were Bi2Te3 nanoparticles and nanorods.

KeywordsBi2Te3; nanoparticle; hydrothermal method; reaction mechanism

猜你喜欢

水热法
水热法原位合成β-AgVO3/BiVO4复合光催化剂及其催化性能
水热法制备环境障涂层用硅酸镱粉体的性能研究
水热法合成WO3纳米片及其甲苯气敏性能研究
改进的水热法在无机非金属材料制备中的应用分析
微波水热法研究SnO2超微颗粒的制备工艺
水热法合成球状锡酸镧及其阻燃聚氯乙烯的研究
双掺杂核壳结构ZnS:Mn@ZnS:Cu量子点的水热法合成及其光致发光性能
微波水热法制备含磷W/Al2O3催化剂及其加氢脱氮性能
水热法制备BiVO4及其光催化性能研究
水热法制备石墨烯-SnO2复合材料的甲醛与乙醇敏感性能的研究