APP下载

哈萨克斯坦Ust-Kamenogorsk地区额尔齐斯构造带构造演化的年代学制约

2016-07-27潘成泽邱林董永观

西北地质 2016年2期

潘成泽 , 邱林 , 董永观

(1 新疆维吾尔自治区国家三〇五项目办公室,新疆 乌鲁木齐 830000;2 南京地质矿产研究所,江苏 南京 210016)



哈萨克斯坦Ust-Kamenogorsk地区额尔齐斯构造带构造演化的年代学制约

潘成泽1, 邱林1, 董永观2

(1 新疆维吾尔自治区国家三〇五项目办公室,新疆 乌鲁木齐830000;2 南京地质矿产研究所,江苏 南京210016)

摘要:额尔齐斯构造带呈北西-南东向从西西伯利亚南缘经Ust-Kamenogorsk、斋桑进入中国的阿勒泰,向南东方向延伸进入蒙古南戈壁地区,全长超过2 000km,是中亚造山带重要的构造边界之一。对哈萨克斯坦境内Ust-Kamenogorsk地区额尔齐斯构造带的宏观岩石-构造特征和不同岩石类型锆石U-Pb定年研究表明,Ust-Kamenogorsk地区的额尔齐斯构造带的强变形片麻岩变质时间发生在460~400Ma,代表了加里东期的碰撞造山事件。侵入其中的片麻状花岗岩的结晶年龄为282Ma,而最晚期切穿构造面理的块状花岗岩的结晶年龄为252Ma。结合前人的研究成果综合分析,表明额尔齐斯构造带经历了古生代的板块拼合、二叠纪的左旋走滑以及三叠纪西伯利亚地幔柱事件导致的岩浆岩侵入等主要构造演化阶段。

关键词:Ust-Kamenogorsk;额尔齐斯构造带;锆石U-Pb年龄;构造演化阶段

额尔齐斯构造带是阿尔泰南缘最重要的板块边界(图1),其南属于准噶尔-哈萨克斯坦板块,北属于阿尔泰造山带(何国琦等,1990,1996;李天德等,1996,2001)。

该构造带在哈萨克斯坦境内长千余千米,中国境内约600余千米,向东延伸到蒙古境内的南蒙造山带南带。额尔齐斯缝合带演化时间长, 构造极为复杂,多期构造叠加完全改变了早期构造面貌。因此要全面研究该构造带的构造演化序列,需要从多方面进行综合分析。

额尔齐斯构造带在哈萨克斯坦境内分隔了Kalba-Narym地体和Rudny阿尔泰地体(BUSLOV et al.,2002;ZHANG et al., 2012)(图2),最宽处可达到50 km。在构造带内发育各种类型的构造岩片,包括来自2个地体边缘的构造岩块。MELNIKOV et al(1997;1998)的研究表明,额尔齐斯构造带在东哈萨克斯坦发育典型的韧性剪切变形, 矿物拉伸线理、旋转碎斑构造等显示以左行剪切构造变形为主,北西—南东方向展布,产状陡倾。BUSLOV et al(2002)对构造带进行云母Ar-Ar定年分析(图2),发现2个主要的年龄峰期,分别是283~276Ma及273~265Ma。但由于研究区构造-岩浆活动强烈且复杂,加之云母矿物自身封闭温度的限制,云母Ar-Ar年龄数据还不足以对额尔齐斯构造带的演化过程做出客观描述。通过对构造带宏观特征的调查研究和主要岩石类型的锆石U-Pb年龄测定,以期对Ust-Kamenogorsk地区额尔齐斯构造带的显生宙构造演化过程做进一步阐释。

1Ust-Kamenogorsk地区额尔齐斯构造带的基本特征

在Ust-Kamenogorsk地区,额尔齐斯构造带是由一系列的韧性剪切断裂构成的断裂系统(图2)。构造带包含4类主要岩石类型:

第一类是黑云母斜长片岩及片麻岩类,局部出现混合岩化片麻岩,是前寒武纪杂岩中所能见到的“最老”的岩石单元。

岩石呈灰黑色、灰白色,片状片麻状构造(图3,图4A、图4B),主要矿物包括黑云母、长石(斜长石为主,可能有少量的钾长石类)、石英。石榴子石少量且分布不均匀,常以条带状分布于伟晶岩边部,可能与局部的岩浆热液活动有关。

1.片岩;2.片麻岩、混合岩、片麻状花岗岩;3块状花岗岩;4.块状花岗闪长岩;5.基性岩墙;6.断层图2 Ust-Kamenogorsk地区额尔齐斯构造带地质简图(依据Buslov等2004)Fig.2 Geological map along the Iritish belt in Ust-Kamenogorsk (After Buslov et al.,2004)

第二类为片麻状花岗岩,呈岩墙、岩株状侵入到黑云母斜长片岩片麻岩中(图3),接触边界清晰,并与岩体发生同期韧性变形,形成复杂的褶皱构造。露头宏观特征显示片麻状花岗岩是黑云母斜长片(麻)岩部分熔融的产物,岩浆发生位移的距离有限,与中国阿勒泰地区很多片麻状花岗岩类似。

第三类是侵入到片麻岩及片麻状花岗岩中的花岗闪长岩,块状构造,未发生变质及变形,局部含有片麻岩团块,其产出特征明确表明花岗闪长岩侵入是发生在韧性剪切变形之后(图3,图4C、图4D)。

第四类是侵入到片麻岩及片麻状花岗岩中的伟晶岩类,伟晶岩类型单一,主要为白云母长石伟晶岩,伟晶岩脉宽度一般为0.5~1m,很少超过1m,延伸3~50m,部分伟晶岩脉发生强烈变形。伟晶岩组成和出露特征与中国阿勒泰一带片麻岩中的伟晶岩非常相似,应是变质作用的产物。

2主要岩石类型矿物特征

黑云母片麻岩(HZK01,82°42′16"E,50°01′14"N):岩石呈灰黑色,片状构造;主要的矿物组成包括黑云母(20%~35%)、斜长石(20%~30%)、钾长石(15%~25%)、石英(30%~45%),局部见少量绿帘石和石榴子石,其中石榴子石以变斑晶形式出现。岩石矿物组合表明其原岩属于正常沉积岩。

片麻状花岗岩(HSK15,82°42′18"E,50°01′16"N)(图4C):片麻状构造,面理总体展布方向与额尔齐斯构造带一致,构造变形复杂,主要表现为左行韧性剪切构造。矿物组成包括黑云母(2%~5%)、角闪石(1%~3%)、斜长石(30%~40%)、微斜长石(10%~20%)、石英(25%~35%),副矿物主要有磷灰石、Ti-Fe氧化物、锆石等。岩石露头构造变形强烈,但薄片中的矿物却保留相对完整,未见明显的旋转碎斑结构,仅石英颗粒显示波状消光特征。在区域上,片麻状花岗岩大多呈北西向的小岩脉或岩株沿额尔齐斯构造带分布,尽管与围岩突变接触,但其面理与围岩面理一致。由此可以推断片麻状花岗岩是同构造就位的,属于构造同期花岗岩。

1.黑云母(斜长)片岩、片麻岩;2.片麻状花岗岩、混合岩;3.花岗闪长岩;4.砂岩、粉砂岩;5.逆冲断层;6.采样点位置及编号图3 Ust-Kamenogorsk南部前寒武系路线地质剖面图Fig.3 Precambrian geological section at the southern margin of the Ust-Kamenogorsk

图4 Ust-Kamenogorsk一带额尔齐斯构造带主要构造特征图Fig.4 Field photos along the Iritish belt in Ust-Kamenogorsk (see details in the text)

花岗闪长岩(HSK16,82°42′18"E,50°01′18"N):取样岩体呈岩株状,面积约0.5km2,块状构造,花岗结构,无变形。主要矿物包括角闪石(15%~25%)、斜长石(40%~50%)、石英(30%~35%)。另有,少量的黑云母等(<5%),除角闪石有少量被交代现象外,矿物原生结构基本得到完整保留。此类花岗闪长岩应是额尔齐斯构造带稳定后的岩浆产物。

3锆石特征及测年结果

对上述黑云母片麻岩、片麻状花岗岩和花岗闪长岩进行锆石U-Pb定年分析,以期对额尔齐斯构造带的构造演化提供精确的年代学约束(表1)。样品测试分析由天津地质矿产研究所完成,测试方法见侯可军等(2009)。

片麻岩(HSK01):锆石均无色透明,从其晶体形态、结构特征等可分为2组。一组具有明显的磨圆度,多为长柱状,长度一般为150~250 um,长短轴之比为2∶1~4∶1,具有显著的生长环带结构。表明此类锆石是岩浆成因,并经历了剥蚀、搬运和再沉积过程。另一组锆石呈不规则粒状,部分为短柱状,无明显环带结构。从测试结果分析,2组锆石具有显著的不一致年龄,其中第一组的206Pb/238U年龄为650~850Ma,而第二组锆石的206Pb/238U年龄为400~460Ma(表1,图5)。很显然,第一组年龄代表了源区的年龄,第二组锆石年龄则代表了变质事件,片麻岩沉积的时代大致为650~460Ma,为震旦纪—早古生代早期。早古生代的构造事件使沉积岩发生角闪岩相变质,这与中国阿勒泰地区及蒙古中部地区部分片麻岩年龄特征一致(陈丽秋等,2012)。

片麻状花岗岩(HSK15):锆石呈柱状,无色透明,长轴一般为150~200 um。在CL图象及BSE图象中,锆石显示了清晰的震荡环带结构,未见继承性的核;20粒锆石U含量为53×10-6~380 ×10-6,Th含量为27×10-6~258×10-6,Th/U值为0.40~1.12(表1)。锆石结构和放射性元素均表明锆石是岩浆结晶形成的。20个测点具有在误差范围内一致的206Pb/238U表面年龄,采用算术平均,获得的年龄为(281±1.1) Ma,代表了片麻状花岗岩的结晶年龄(图5)。

花岗闪长岩(HSK16):锆石颗粒相对细小,一般为100~150 um,少量小于100 um。锆石无色透明,具有不规则的环带结构,Th/U值为0.2~0.6。16粒锆石16次分析,U含量为46×10-6~737×10-6,Th含量为25×10-6~277×10-6。从分析结果看,有2粒锆石可能为岩浆捕获锆石,年龄约320Ma。其余14个测点中,有6个测点由于误差较大未纳入计算,其他8个测点在误差范围内有一致的206Pb/238U年龄,其算术平均值为(252.4±2.6) Ma(图5),可以代表花岗闪长岩的结晶年龄。

表1 Ust-Kamenogorsk地区额尔齐斯构造带中不同岩石类型锆石LA-ICPMS U-Pb定年结果表

续表1

样品编号Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年龄(Ma)1σ207Pb/235U年龄(Ma)1σHSK011014880.150.064860.49680.02110.05560.00234054435461126580.450.076470.60020.03060.05660.00284754474551229570.510.077360.61010.03260.05720.00304804500581350990.500.077660.61210.02230.05720.002148245004014771550.500.067350.52080.01430.05610.00154203458301526670.390.070160.54810.03020.05670.00324374481621639890.440.073170.57970.02400.05750.00244555510461736900.390.1197121.05550.02740.06400.00167297740261849411.200.1097100.95250.05340.06300.00356716707581942740.570.067860.51830.02640.05540.00284234429552018570.320.072460.56030.03410.05610.003445044586721801890.420.073960.57790.01370.05670.0013459448126221631970.830.067260.52050.01240.05620.00144194460272330630.470.067460.51880.02600.05540.002842144305624981450.670.1376121.28340.02590.06760.001383178572125981450.670.1376121.28390.02590.06770.0013831785821样品编号Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年龄(Ma)1σ207Pb/235U年龄(Ma)1σHSK151741140.650.044840.36130.01650.05850.0026282231314239610.630.045540.33620.02770.05360.00422873294243782020.390.044840.31750.01080.05140.0017282228010457930.610.044840.32340.02280.05240.00362832285205661530.430.044440.36310.01690.05930.00272802314156951960.480.044040.52760.01190.08690.0019278243010773940.780.044040.32180.01710.05300.00282782283158701000.700.044640.33030.01940.05380.0032281229017927530.500.044550.32720.02940.05330.004628132872610572800.200.045240.33180.00950.05330.00152853291811371340.280.044940.33180.01850.05350.0029283329116122583730.690.044130.31620.00760.05200.001227822797131391940.720.044440.47940.01300.07830.002228023981114681630.420.044840.32990.01140.05340.0018282228910151261131.120.045040.32760.01710.05280.00272842288151640750.540.043940.33170.02400.05480.0038277329121171011750.580.044440.31770.01210.05190.002028022801118751590.480.044340.43770.01260.07170.0021279236911

续表1

样品编号Th*U*Th/U206Pb/238U1σ207Pb/235U1σ207Pb/206Pb1σ206Pb/238U年龄(Ma)1σ207Pb/235U年龄(Ma)1σHSK1519431080.400.044440.54780.02120.08950.00342803444172043660.650.044140.59310.02890.09760.0047278347323HSK161551860.300.040340.32050.01380.05770.0025255228212225460.530.051050.39150.04340.05570.00583213335373492870.170.040130.29620.00950.05360.00172542263841262270.560.039830.28290.01030.05160.0018252225395441990.220.039440.43040.01410.07920.00232492363126401550.260.040640.29310.01440.05230.00262572261137942850.330.043540.38040.00920.06340.00152753327882777370.380.031740.36230.00700.05560.00132013314691082740.390.040730.29450.00890.05250.0015257226281030860.350.039340.29110.01780.05370.003224932591611321230.260.050140.36530.01460.05290.0021315331613122034020.510.035830.25650.00640.05190.0013227223261334810.420.038340.31840.02490.06040.0047242228122141142710.420.038530.28050.00960.05280.00182442251915752280.330.039530.40360.01160.07400.0020250234410161103460.320.039240.27910.00710.05160.001324822506

注 :U、Th含量为10-6。

4讨论

根据不同岩石类型锆石U-Pb年龄和锆石结构特征,可以初步认为。①Ust-Kamenogroask一带前人归属于早前寒武纪的变质岩系是新元古代-早古生代早期的沉积产物(Vasyukova等,2011),其岩石类型、变质变形、副变质矿物组合、锆石特征及U-Pb年龄等,与中国阿勒泰地区的克木其群几乎一致(杨富全等,2006;XIAO et al. 2008, 2009, 2010)。②变质岩系变质时间为加里东期(400~460 Ma),与中国阿勒泰克木其群变质年龄相吻合,充分表明加里东期造山事件在区域上可能延伸上千千米(WINDLEY et al. 2007; XIAO et al. 2004; METELKIN et al. 2005)。Ust-Kamenogorsk地质研究所在该地区额尔齐斯构造带南部的超高压-高压变质岩中(榴辉岩),获得变质矿物Ar-Ar年龄为430Ma,也进一步佐证了这一点。③280Ma左右的片麻状花岗岩,是在额尔齐斯构造带发生左行剪切的构造背景下,局部温压变化导致部分熔融形成的(胡蔼琴等,2006;周刚等,2007)。④250Ma时期,处于伸展构造背景,形成块状花岗闪长岩。

结合前人的Ar-Ar年龄结果,可以确定Ust-Kamenogorsk地区构造热事件序列。①850Ma~460Ma期间,是以被动大陆边缘沉积组合为特征的沉积岩系形成阶段,代表在新元古代晚期—早古生代早期山区阿尔泰褶皱造山后的又一沉积旋回。厚度巨大的哈巴河群是这一时期沉积的典型代表,也是Rundy阿尔泰的重要组成部分。②460Ma~400Ma期间,是山区阿尔泰南缘重要的构造演化阶段,这一时期造成了被动大陆边缘的沉积组合发生全面的褶皱变形和中深程度的变质作用,甚至在局部地区还出现麻粒岩相及榴辉岩相变质作用,如在Ust-Kaminogorsk南部地区412Ma的榴辉岩是这一时期深俯冲作用的重要证据。③280~270Ma期间,是另一个重要的构造演化阶段,除了左行走滑作用,在额尔齐斯构造带两侧还发育了大量的超镁铁岩及A型花岗岩(秦克章等,2012),近年来的研究认为,它们可能和塔里木二叠纪地幔柱有关(ZHANG et al., 2010; 2013a, 2013b, 2014)。④250Ma左右,走滑构造作用结束,区域上处于伸展构造背景,形成块状花岗闪长岩。这一期的构造热事件,可能受到西伯利亚地幔柱的影响(VASYUKOVA et al., 2011)。

图5 Ust-Kamenogorsk南部不同类型岩石锆石U-Pb年龄谐和图Fig.5 Zircon U-Pb concordia of the diverse rocksat the Iritish belt in Ust-Kamenogorsk

5结论

根据野外地质调查和锆石U-Pb定年,可以得出以下结论。

(1)Ust-Kamenogorsk地区额尔齐斯构造带主要经历了3期构造-岩浆-变质事件,分别为460~400Ma、280~270Ma和250Ma。

(2)早期的构造热事件可能代表了Kalba-Narym地体和Rudey-Altai地体的拼合事件,与中国境内的阿勒泰造山带这一时期的造山事件相当。

(3)280~270Ma的构造热事件是由于西伯利亚板块的逆时针旋转造成额尔齐斯构造带左旋走滑效应的结果。

(4)250Ma代表了最晚期的岩浆事件,可能是西伯利亚地幔柱在中亚造山带的岩浆效应。

致谢:感谢审稿人对本文认真细致的审阅和宝贵意见;感谢国家三〇五项目“成矿动力学背景和成矿过程研究”(2011BAB06B03-01)的资助。

参考文献(References):

侯可军,李延河,田有荣. LA-MC-ICPMS 锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4):481-492.HOU kejun, LI Yanhe, TIAN Yourong. In situ U-Pb zircon dating using laser ablation multi ion counting-ICP-MS[J]. Mineral Deposit,2009,28(4):481-492 (in Chinese with English abstract).

何国琦,韩宝福,岳永君,等. 中国阿勒泰造山带的构造划分和地壳演化[M]. 新疆地质科学,1990.

HE Guoqi,HAN Baofu, YUE Yongjun ,et al. Tectonic division and crustal evolution of Altay Orogenic Belt in China[M]. Geoscience (Xinjiang) ,1990 (in Chinese with English Abstract).

何国琦,李茂松.兴蒙-北疆及邻区古生代蛇绿岩的对比研究及其大地构造意义,张旗主编:蛇绿岩与地球动力学研究[M].北京:地质出版社,1996.

HE Guoqi, LI Maosong. Comparison study and tectonic significance of the Paleozoic ophiolites in the Xingmneg-North Xijiang and its marginal area. In Zhang Qi (ed.): Geodynamics of ophiolites[M]. Beijing: Geological Publishing House, 1996 (in Chinese).

胡霭琴,韦刚健,邓文峰.阿尔泰地区青河县西南片麻岩中错石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2006, 2(1):l-10.

HU Aiqin, WEI Jiangang, DENG Wenfeng. SHRIMP zircon U-Pb dating and its significance for gneisses from southeastern area to Qinghe County in the Altai, China[J]. Acta Petrologica Sinica, 2006,2(1): 1-10 (in Chinese with English abstract).

李天德,B.H.波里扬斯基.中国和哈萨克斯坦阿尔泰大地构造及地壳演化[J].新疆地质,2001,19(1):27-32.

LI Tiande, POLIYANGSIJI, B.H. Tectonic and crustal evolution of Altai in China and Kazakhstan[J]. Xinjiang Geology, 2001, 19(1):27-32 (in Chinese with English abstract).

杨富全, 毛景文, 郑建民,等. 哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型[J].地质学报,2006,80(7):963-983.

YANG Fuquan, MAO Jingwen, ZHENG Jianmin,et al. Geology andMetallogenic Model of the Altay Large Metal logenic Belt in Kazakhstan[J]. Acta Geologica Sinica, 2006, 80(7): 963-983.

周刚,张招崇,罗世宾,等. 新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义[J]. 岩石学报,2007, 23(8):1909-1920.

ZOU Gang, ZHANG Zhaochong, LUO Shibin,et al. Confirmation of hightemperature Strongly peraluminous Mayin'ebo granites in the south margin of Alty,Xinjiang:age.geochemistry and tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(8):1909-1920.

秦克章, 唐冬梅, 苏本勋, 等.北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J].西北地质,2012,45(4):84-116.

QIN Kezhang, TANG Dongmei, SU Benxun, et al. The Tectonic setting, style, basic feature, relative erosion deee, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni- bearing Permian mafic- ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 2012, 45(4):84-116.

陈丽秋,赵忠合,何立新,等.新疆玛因鄂博断裂南侧阿热勒托别岩体地球化学特征及地质意义[J].西北地质,2008,41(2),22-30.

CHEN Qiuli, ZHAO Zhonghe, He Lixin, et al. Geochemistry and tectonic implications of the aretuobie pluton to south of the Mayinebo suture zone in Altay, Xinjiang[J]. Northwestern Geology, 2008, 41(2), 22-30.

BUSLOV, M.M., WATANBE, T., FUJIWARA, I., et al. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation[J]. Journal of Asian Earth Sciences, 2004, 23, 655-671.

METELKIN, DV, VERNIKOVSKY, VA, KAZANSKY, AY, et al. The Siberian Craton in the structure of the Supercontinent Rodinia: analysis of paleomagnetic Data. Doklady Earth Sci. 2005, 404:1021-1026.

VASYUKOVA, EA., IZOKH, AE., BOROSENKO, AS., Early Mesozoic lamprophyres in Gorny Altai: petrology and age boundaries[J]. Russian Geology and Geophysics,2011,52:1574-1591.

WINDLEY, BF, ALEXEIEV D, XIAO, WJ, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. J. Geol. Soc., London., 2007, 164: 31-47.

XIAO, W., WINDLEY, BADARCH, G., et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of Central Asia[J]. J. Geol. Soc., London, 2004, 161:339-342.

XIAO, WJ, HAN, CM, YUAN, C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32:102-117.

XIAO, W., KRONER, A, WINDLEY, B. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic[J]. Int. J. Earth Sci, 2009a, 98:1185-1188.

XIAO, WJ, HUANG, BC, HAN, CM, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18:253-273.

ZHANG, C.L., SANTOSH, M., ZOU, H.B., et al. Revisiting the ‘‘Irtish tectonic belt’’: implications for the Paleozoic tectonic evolution of the Altai orogeny[J]. Journal of Asian Earth Sciences, 2012, 52:117-133.

ZHANG, CL., ZOU, HB, YAO, CY et al. Origin of the Permian gabbroic intrusions in the southern margin of the Altai Orogen: A possible link to the Permian Tarim mantle plume?[J] Lithos,2014, 204: 112-124.

ZHANG, CL, ZOU, HB.Comparison between the Permian mafic dykes in Tarim and the western part of Central Asian Orogenic Belt (CAOB), NW China: implications for two mantle domains of the Permian Tarim Large Igneous Province[J]. Lithos, 2013a, 174: 15-27.

ZHANG, CL, ZOU, HB. Permian A-type granites and Tarim and western part of the Central Asia Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume?[J] Lithos, 2013b,172-173, 47-60.

ZHANG CL, LI, ZX, LI, XH et al. A Permian Large Igneous Province in Tarim and Central Asian Orogenic Blet (CAOB), NW China: Results of a ca. 275 Ma mantle plume?[J] GSA Bulletin, 2010,122(11-12) 2020-2040.

收稿日期:2015-06-15;修回日期: 2016-1-20

基金项目:十二五国家三〇五项目“成矿动力学背景和成矿过程研究”(2011BAB06B03-01)

作者简介:潘成泽(1964-),男,辽宁宽甸人,地质矿产高级工程师,2005年毕业于中国地质大学地质工程硕士专业,主要从事地质矿产调查研究和科技管理工作。E-mail:xj305pcz@vip.163.com

中图分类号:P597

文献标志码:A

文章编号:1009-6248(2016)02-0189-09

Tectonic Evolution of the Iritish belt in Ust-Kamenogorsk Area, Kazakhstan: New Geochronological Evidence

PAN Chengze1, QIU Lin1, DONG Yongguan2

(1.National 305 Project Office, Urumuqi 830000,Xinjiang, China;2.Nanjing Institute of Geology and Mineral Resources, Nanjing210016,Jiangsu,China)

Abstract:The Iritish belt, served as one of the most important tectonic boundary in Central Asian Orogenic Belt (CAOB), extends more than 2 000 kilometers from west Siberian, through Ust-Kamenogorsk and Zhaisang Lake in Kazakhstan, Chinese Altai and then into Mogonia. In combination with systematic geochronological data, the detailed field observation along the Iritish belt in Ust-Kamenogorsk have been reported in this paper, aiming to have a better understanding its tectonic evolution process.The data reveals that amphibolite-facies metamorphism of the gneiss in this belt took place during 460~400 Ma, representing the Caledonian orogenic event. The gneissic granitesintruded into the gneiss along the lamellar structure and crystallized at ca.282 Ma, while the massive granodiorites sharply cut across the schistosity, with crystallized age of ca.252 Ma. Based on these observations, the evolution process of the Iritish belt can be divided into three stages at least, i.e., the Caledonian orogenic event (460~400 Ma), the Permian sinistral strike-slip and the Triassic magmatic event possibly related to the Siberia mantle plume.

Keywords:Ust-Kamenogorsk; Iritish belt; zircon U-Pb age; tectonic evolution