On Cohn′s conjecture concerning the Diophantine equation (an-1)(bn-1)=x2
2016-07-22DONGZhongminLIXiaoxue
DONG Zhongmin,LI Xiaoxue
(1.School of Information Engineering,Xi′an University,Xi′an 710065,China;2.School of Mathematics,Northwest University,Xi′an 710127,China)
On Cohn′s conjecture concerning the Diophantine equation (an-1)(bn-1)=x2
DONG Zhongmin1,LI Xiaoxue2
(1.School of Information Engineering,Xi′an University,Xi′an 710065,China;2.School of Mathematics,Northwest University,Xi′an 710127,China)
Abstract:Let a, b be two distinct positive integers. Aimed at the Cohn′s conjecture that the equation (an-1)(bn-1)=x2 has no positive integer solutions (x,n) with n>4. Using the method of elementary number theory and the properties of exponential Diophantine equation,it is proved that if the parity of a and b are opposite, then the equation has no positive integer solutions (x,n) satisfying n>4 and 2|n.
Key words:exponential Diophantine equation; Cohn′s conjecture; elementary number theory method
1Introduction and main result
Let N be the set of all positive integers. Leta,bbe two distinct positive integers. In recent years, there are many papers investigated the solutions (x,n) of the equation[1-7]
(an-1)(bn-1)=x2,x,n∈N.
(1)
Otherrelevantcontentcanbefoundinthereferences[8-15].In2002,J.H.E.Cohn[3]conjecturedthat(1)hasnosolutions(x,n)withn>4.Thisproblemisnotresolvedasyet.
Inthispaper,usingthemethodofelementarynumbertheoryandthepropertiesofexponentialDiophantineequation,thefollowingresultcanbeproved:
Theorem 1If the parity ofaandbare opposite, then (1) has no solutions (x,n) satisfyingn>4 and 2|n.
2Preliminaries
To complete the proof of Theorem 1, we need several lemmas as follows.
Lemma 1Letdbe a positive integer which is not a square.Then the equation
u2-dv2=1,u,v∈N
(2)
(3)
Then(u,v)=(uk,vk) (k=1,2,…)areallsolutionsof(2).
ProofSee Theorems 10.9.1 and 10.9.2 of reference[8].
Lemma 2Let (u,v)=(ur,vr) and (us,vs) be two solutions of (2), whererandsare positive integers. If 2|urand 2⫮us,then 2⫮rand 2|s.
ProofWhen 2|r, by (3), we have
(4)
(5)
and hence,uris odd. It implies that if 2|ur, then
2|r.
(6)
By (3) and (6), we have
(7)
(8)
Therefore, we see from (7) and (8) that if 2|ur, then
2|u1.
(9)
When 2⫮s, by (3) and (9), we haveu1|usand 2|us. It implies that if 2⫮us, then
2|s.
(10)
Thus, by (6) and (10), the lemma is proved.
Lemma 3Ifa
ProofSee Result 2 of reference[3].
Lemma 4The equation
X2+1=Ym,X,Y,m∈N,m>1
(11)
hasnosolutions(X,Y,m).
ProofSee reference[9].
Lemma 5pis an odd prime,X,Y∈N,X>1,theequation
Xp+1=2Y2
hasonlythesolution(p,X,Y)=(3,23,78).
ProofSee Proposition 8.1 of reference[10].
3Proof of the theorem
Letaandbbe two positive integers which parity are opposite. By the symmetry ofaandbin (1), we may assume that
2|a,2⫮b.
(12)
We now assume that (x,n) is a solution of (1) satisfyingn>4 and 2|n. By Lemma 3, we have 4⫮n. It implies thatn/2 is an odd integer withn/2≥3, andn/2 has an odd prime divisor. So
n=2pl,pis an odd prime,l∈N, 2⫮l.
(13)
By(1),wehave
an-1=dy2,bn-1=dz2,x=dyz,d,y,z∈N.
(14)
(u,v)=(an/2,y),(bn/2,z).
(15)
ApplyingLemma1to(15),wehave
(an/2,y)=(ur,vr),(bn/2,z)=(us,vs),r,s∈N.
(16)
Further,usingLemma2,wefindfrom(12)and(16)thatrandssatisfy(6)and(10)respectively.
By(3), (5)and(10),wehave
(17)
Substitute(17)into(16),by(13),weget
(18)
Sinceb>1by(1),applyingLemma5to(18),weobtain
p=3, l=1, n=6, b=23, us/2=78.
(19)
d=6 083,u1=78, v1=1.
(20)
By(6), (7), (16), (19)and(20),weget
(21)
Since78=2×3×13,weseefrom(21)that78|aanda=78c,wherecisapositiveinteger.Therefore,by(21),weget
(22)
But,since2⫮rby(6), (22)isimpossible.Thus,iftheparityofaandbareopposite,then(1)hasnosolutions(x,n)satisfyingn>4and2⫮n.Thetheoremisproved.
References:
[1]SZALAY L.On the Diophantine equation (2n-1)(3n-1)=x2[J].Publicationes Mathematicae Debrecen,2000,57(1/2):1-9.
[2]HAJDU L,SZALAY L.On the Diophantine equations (2n-1)(6n-1)=x2and (an-1)(akn-1)=x2[J].Periodica Mathematica Hungarica,2000,40(2):141-145.
[3]COHN J H E.The Diophantine equation (an-1)(bn-1)=x2[J].Periodica Mathematica Hungarica,2002,44(2):169-175.
[4]LUCA F,WALSH P G.The product of like-indexed terms in binary recurrences[J].Journal of Number Theory,2002,96(1):152-173.
[5]LE M H.A note on the exponential Diophantine equation (an-1)(bn-1)=x2[J].Publicationes Mathematica Debrecen,2009,74(3/4):401-403.
[6]LI L,SZALAY L.On the exponential Diophantine equation (an-1)(bn-1)=x2[J].Publicationes Mathematica Debrecen,2010,77(3/4):465-470.
[7]GUO X Y.A note on the Diophantine equation (an-1)(bn-1)=x2[J].Periodica Mathematica Hungarica,2013,66(1):87-93.
[8]HUA L K.An introduction to number theory[M].Beijing:Science Press,1979.
[9]LEBESGUE V A.Sur I′impossibilité en nombers entiers de I′équationxm=y2+1[J].Nouvelles Annales de Mathematiques,1850,9(1):178-181.
[10]BENNETT M A,SKINNER C M.Ternary Diophantine equation via Galois representations and modular forms[J].Canadian Journal of Mathematics,2004,56(1):23-54.
[11]GE J.On the exponential Diophantine equation (an-1)(bn-1)=x2[J].Journal of Xi′an Shiyou University:Natural Science Edition,2012,27(3):206-107.
[12]HE G R.A note on the Diophantine equation (am-1)(bn-1)=x2[J].Pure and Applied Mathematics,2011,27(5):581-585.
[13]LI Ling,LI Xiaoxue.The Diophantine equationpx+qy=z2(in Chinese)[J].Basic Sciences Journal of Textile Universities,2015,28(1):42-44.
[14]TANT Min.A note on the exponiential Diophantine equation (am-1)(bn-1)=x2[J].Journal of Mathematical Research & Exposition,2011,31(6):1064-1066.
[15]WU Lei,LI Zhaojun.On the Diophantine equation (an-1)(bn-1)=x2(in Chinese)[J].Pure Mathematics,2011(1):172-176.
编辑、校对:师琅
DOI:10.13338/j.issn.1006-8341.2016.02.003
Received date:2015-10-08
Foundation item:This work is supported by the Foundation of Shaanxi Educational Committee(14JK2124)
Corresponding author:DONG Zhongmin(1943—),male,native of Yancheng,Jiangsu province,associate professor of Xi′an University,research area is number theory.E-mail:lxx20072012@163.com
CLC number:O 156.7
Document code:A
关于Diophantine方程(an-1)(bn-1)=x2的Cohn猜想
董忠民1,李小雪2
(1.西安文理学院 信息工程学院,陕西 西安 710065;2.西北大学 数学系,陕西 西安 710127)
摘要:设a和b是两个不相等的正整数.针对Cohn 猜想,即方程(an-1)(bn-1)=x2没有正整数解(x,n),其中n>4.利用初等数论方法和指数Diophantine方程的性质,得到了如果a和b具有相反的奇偶性,那么方程没有满足n>4和2|n的正整数解(x,n).
关键词:指数Diophantine方程;Cohn猜想;初等数论方法
Article ID:1006-8341(2016)02-0148-04
Citation format:DONG Zhongmin,LI Xiaoxue.On Cohn′s conjecture concerning the Diophantine equation (an-1)(bn-1)=x2[J].纺织高校基础科学学报,2016,29(2):148-151.
DONG Zhongmin,LI Xiaoxue.On Cohn′s conjecture concerning the Diophantine equation (an-1)(bn-1)=x2[J].Basic Sciences Journal of Textile Universities,2016,29(2):148-151.