APP下载

深化思维的印记

2016-07-08张玲

湖北教育 2016年10期
关键词:解决问题思维能力情境

●张玲



深化思维的印记

●张玲

数学思维能力的培养需要依托合适的背景资源。在小学数学教学中,概念、计算、解决问题、图形几何教学等都可以培养学生数学思维能力。其中解决问题是渗透数学思想方法,培养数学思维能力的核心内容。课题组针对解决问题教学,以学生的学为核心,以课堂为主阵地,用渗透法、拓展法、训练法,适当补充教学内容,合理拓展思维训练的空间,开发数学思维专项训练活动。

数学思维能力与常用数学方法的对应结构图

一、分段式

低年级经历“抽象——具体直观——语言抽象”的过程,用“说”思维的途径,培养数学思维能力。

“说”,即是描述,这里是指描述事物的核心、本质。语言是思维的外壳,从思维开始,经历中间过程,再到结果,都要以语言来定型。在数学课堂教学中,主要让学生试图通过直观操作法、画图法、化归法等数学思维方法找到思维形成的过程,再让学生通过“说”这条主线,促使思维活跃起来,进一步深化学生对知识形成过程的理解,刻画出自己思维形成的脉络,从而充分发展小学低年级学生的观察、比较、分析、描述等能力,为他们数学思维能力形成和发展打下坚实的基础。

例如,笔者在执教人教版《数学》一年级下册《十几减9》时分三个步骤引导:首先,出示主题图,让学生观察后说一说得到了哪些数学信息、需要解决什么样的数学问题并思考通过什么样的方式解决问题;再让学生画一画、算一算,将自己的思考过程用直观的操作方式呈现出来;最后,学生小组讨论后汇报交流。最后一步是是最为重要的环节,要求学生用语言结合自己画出的思考过程图,描述出自己的思考过程,引发大家的思考、关注。

中年级经历“类比——分析——实验”的过程,用“画”出思维的途径,培养数学思维能力。

“画”出思维就是引导学生用“画”的方法,展示思维过程。教师要引导学生将抽象的数学知识符号化,化抽象为具体。画出思维的过程既是学生理清思维脉络的过程,更是培养学生数学思维能力的重要策略。其中绘制思维导图展现学生的思维过程,是培养思维的有序性和缜密性的有效方法之一。

思维导图可以引导学生从已有的知识出发推导出新的知识,同时与旧知识进行比较、分析,区别异同,培养学生有条理、有根据地思考。

高年级经历“分析——假设——验证”的过程,多层面渗透数学思想方法,培养数学思维能力。

①运用分析综合法引导有序思考,数学教学中,分析是指由问题入手,逐层确定解决问题的条件。综合是由条件入手,逐层确定能够解决的问题。不仅要让学生知道该怎样思考这个问题,还要让学生知道为什么要这样思考。②运用对比法揭示事物本质。恰当地运用求同与求异的思维方法,能够有效地促进学生思维发展。③利用转化的思想化未知为已知,数学教学中的转化思想主要表现为数学知识的某一形式向另一形式转变,即化新为旧、化繁为简、化曲为直、化数为形等等。如在探索平行四边形、梯形、三角形等图形的面积公式时,通常引导学生比较后得出将要学习图形的面积。

二、模型化

千家街小学在两年多的研究和实践中,逐步总结出了自己的课堂教学模型。主要分为以下五步:

第一步:“以境启思”——链接生活实际、激趣生思

创设激发学生思维的情境。分为四种类型:①铺垫型情境。通过由浅入深、由此及彼、由正及反等不同方式的引导,延展出不同的新问题,建立起新旧问题之间的联系,通过分解和转化,将新知转化成旧知。②冲突型情境。选择富有挑战性、探究性且处于学生认知结构的最近发展区内的非常规问题为素材,引起学生的认知冲突,激起学生强烈的探究欲望。③策略型情境。是以思维策略多样、解题方法典型、解题过程能体现某种完整的数学思想方法的问题作为素材,引导学生辨析完善,尝试多策略解决问题的方法。④试误型情境。对学生的解题错误进行分析后,对错误原因进行归类分析,然后结合生活实际,选择本质属性相同的素材,引导学生通过反思错误的原因,加深学生对知识、方法的理解和掌握。

第二步:“以思促思(一)”——抽象问题情境、启迪思维

建立起问题情境后,教师需要将生活中的实际问题进行解剖,挖掘问题的数学本质属性,建立起生活与数学的联系。然后从数学的角度提出问题,启发学生的思维。在教学人教版《数学》三年级下册《平均数》一课时,男女两队同学拍球后,学生或用直观操作,或是用列式计算求出平均数之后,教师引导学生讨论:①个数是怎样移动的呢?②男队平均每人7个球,它表示哪一位同学拍的个数呢?你怎么理解这个7?这个7原本存在吗?它是怎么求出来的?③女队平均每人拍8个,这里的8能表示某某同学拍球的个数吗?如果不能,那8表示什么意思?学生通过质疑、思考、讨论、辨析,明白了:平均数原本不存在,是我们人为重新均分后一个虚拟的数据,……课堂上有意识地设置既联系实际,又易于混淆的数学问题,通过师生、生生的思维碰撞,促进学生思维的发展。

第三步:“以思促思(二)”——师生学导互动、扩充思维

“学导互动”是指在课堂教学中,学生和教师是双主体关系。它是以学生自学为主,教师精讲为辅;学生主动学在前,教师讲在后,而且要精讲,抓住精华,讲得精练;在学生自学的基础上,着重讲清学生理解不透的重点,久攻不破的难点,解决问题的要点。学导互动的目标是开发智能,依靠自主学习的方式去独立获取知识、培养探索能力、创造能力和思维能力,养成独立分析、勤于思考的习惯。

第四步:“以练悟思”——模型应用练习,深化思维

练习的设计不仅有助于学生理解知识间的纵横关系,掌握知识的系统性,而且有助于学生开拓思路,深化思维,提高学生运用知识解决问题的能力。因此教师必须加强练习设计的研究,不能将学生引入“题海战术”,这就要求学生的练习要“少而精”,教师必须对习题进行精选,尽量选择具有启发性、典型性、规律性和针对性的习题,采用“多变、多析、多问、多解”的导向组织学生练习,鼓励学生一题多解,多角度、多层次分析问题,进而达到培养学生思维深刻性和创造性的目的。

第五步:“以用升思”——还原生活实际,发展思维

应用数学的过程实际就是培养学生判断、推理、归纳、创造等思维能力的过程。

《平均数》一课教学的最后,笔者引导学生讨论“小明在平均水深110cm的游泳池中游泳会不会有危险?”让学生运用所学的知识,灵活地解决生活中的实际问题。

(本课题系武汉市教育科学“十二五”规划重点课题)

(作者单位:武汉市武昌区千家街小学)

实习编辑孙爱蓉

责任编辑刘玉琴

猜你喜欢

解决问题思维能力情境
不同情境中的水
联系实际 解决问题
助农解决问题增收致富
在解决问题中理解整式
借助具体情境学习位置与方向
培养思维能力
创设情境 以说促写
培养思维能力
化难为易 解决问题
护患情境会话