APP下载

面向用户群体的Web服务推荐

2016-06-28谢琪崔梦天

计算机应用 2016年6期
关键词:协同过滤服务质量

谢琪 崔梦天

摘 要:针对Web服务推荐中服务用户调用Web服务的服务质量数据稀疏性导致的低推荐质量问题,提出了一种面向用户群体并基于协同过滤的Web服务推荐算法(WRUG)。首先,为每个服务用户根据用户相似性矩阵构建其个性化的相似用户群体;其次,以相似用户群体中心点代替群体从而计算用户群体相似性矩阵;最后,构造面向群体的Web服务推荐公式并为目标用户预测缺失的Web服务质量。通过对197万条真实Web服务质量调用记录的数据集进行对比实验,与传统基于协同过滤的推荐算法(TCF)和基于用户群体影响的协同过滤推荐算法(CFBUGI)相比,WRUG的平均绝对误差下降幅度分别为28.9%和4.57%;并且WRUG的覆盖率上升幅度分别为110%和22.5%。实验结果表明,在相同实验条件下WRUG不仅能提高Web服务推荐系统的预测准确性,而且能显著地提高其有效预测服务质量的百分比。

关键词:服务计算;Web服务;协同过滤;服务质量;用户群体

中图分类号: TP393.027TP311.5 文献标志码:A英文标题

猜你喜欢

协同过滤服务质量
门诊服务质量管理的实践研究
加强西药房管理对药学服务质量的影响
西药房药学服务质量的提升路径及作用分析
关于港口物流服务质量的文献综述
图书推荐算法综述
改进的协同过滤推荐算法
基于链式存储结构的协同过滤推荐算法设计与实现
基于相似传播和情景聚类的网络协同过滤推荐算法研究
基于协同过滤算法的个性化图书推荐系统研究
混合推荐算法在电影推荐中的研究与评述