面向用户群体的Web服务推荐
2016-06-28谢琪崔梦天
计算机应用 2016年6期
谢琪 崔梦天
摘 要:针对Web服务推荐中服务用户调用Web服务的服务质量数据稀疏性导致的低推荐质量问题,提出了一种面向用户群体并基于协同过滤的Web服务推荐算法(WRUG)。首先,为每个服务用户根据用户相似性矩阵构建其个性化的相似用户群体;其次,以相似用户群体中心点代替群体从而计算用户群体相似性矩阵;最后,构造面向群体的Web服务推荐公式并为目标用户预测缺失的Web服务质量。通过对197万条真实Web服务质量调用记录的数据集进行对比实验,与传统基于协同过滤的推荐算法(TCF)和基于用户群体影响的协同过滤推荐算法(CFBUGI)相比,WRUG的平均绝对误差下降幅度分别为28.9%和4.57%;并且WRUG的覆盖率上升幅度分别为110%和22.5%。实验结果表明,在相同实验条件下WRUG不仅能提高Web服务推荐系统的预测准确性,而且能显著地提高其有效预测服务质量的百分比。
关键词:服务计算;Web服务;协同过滤;服务质量;用户群体
中图分类号: TP393.027TP311.5 文献标志码:A英文标题