再制造闭环供应链研究现状分析
2016-06-20陈湘州刘雅男文思倩
陈湘州 刘雅男 文思倩
摘要:文章通过分析国内外闭环供应链的研究现状及进展文献综述发现,国内的文献主要侧重于运用博弈论、群智能优化算法分别研究闭环供应链的契约协调、定价、生产计划问题和闭环供应链设施选址等问题,而缺乏其它方面的深入研究,国外对再制造闭环供应链的研究范围大,角度多,但涉及到对含有多个变量及变量之间存在复杂的非线性关系的闭环供应链研究较少,构建与实际相近的闭环供应链模型体系是未来闭环供应链研究的方向。
关键词:闭环供应链;博弈论;优化算法
中图分类号:F252.2 文献识别码:A 文章编号:1001-828X(2016)004-000105-01
一、引言
近年来,随着各国对可持续发展认识的深入,以及人们环保意识的加强,各国政府纷纷制定相应的法律法规,强制生产企业必须承担起环保责任,因此一个有异于传统的供应链领域一闭环供应链应运而生。闭环供应链是指企业从采购到最终销售的一条完整供应链循环,包括了产品回收与生命周期支持的逆向物流。虽然对于它的研究开始得比较晚,但近几年取得了很大的进展,本文将整理国内外再制造闭环供应链的文献,对其现状进行分析。
二、国内文献述评
关于闭环供应链契约协调、定价的研究,国内学者主要研究的是确定条件下或者需求和回收有一方不确定情况下的收益费用共享契约,较少的研究需求和回收同时不确定下的多种契约模式,并且国内学者的研究只限于用线性关系表示需求和回收的不确定性,这并不符合现实情况。如:范小三、杨志林、汪峻萍(2014)t~应用博弈论探讨了需求和回收都为随机情形情况下,分散决策和集中决策系统中产品的定价策略,并提出收益费用共享契约,以实现供应链的协调,最后利用数值仿真分析研究了回收的不确定性对供应链中各成员的定价、利润及订货策略产生的影响。
阅读国内对于闭环供应链的生产计划研究发现,其生产计划模型往往设定为确定条件下两个或三个企业,其中制造商、零售商选择率最高,但是我们的目的是对整条闭环供应链进行优化,而且其存在不同形式的不确定性问题,所以无法实现对现实生活中整条闭环供应链的有效管理。
关于闭环供应链环境下设施选址问题,国内的研究较少但也取得了一些成果。如孙林岩、马祖军、陈延阵等人。根据文献研究可知,在解决传统供应链库存选址的问题时通常用到的两种方法是:优化算法与仿真,这同样适用于闭环供应链,但因为其需求与回收的不确定性,其复杂性更高难度更大,虽然运用了一些启发式算法,而国内学者大多采用线性关系来表示其不确定性,所以不符合现实情况,在这种情况下运用不确定性的参数尤为重要。
三、国外文献述评
关于闭环供应链契约协调的研究,国外学者对此已有比较全面深入的研究,主要包括以下六种契约形式:第一,批发价契约,第二,回购契约,第三,收益共享契约,第四,返利契约研究,第五,数量折扣契约,第六,数量柔性契约。
商品的销售价格和回收产品价格等问题在闭环供应链研究中也处于重要地位。EIsaadany和Jaber(2010)pl在分析了生产再制造废弃物处理的关系后,建立了一种经济生产量模型,在该模型中回收产品的价格和质量与回收速率满足一定的函数关系。而在不确定条件下闭环供应链的定价问题方面,Galbreth和Blaekburn(2010)[3]则假设每批回收到的废旧品质量是服从均匀分布的随机变量,并分析了确定需求量条件下的优化方法,Teunter与Flappe将该模型进行了改进,在确定需求和随机需求的条件下,把废旧品质量分为多种离散质量类别并且收益期望值进行优化。
在生产计划方面,国外学者较国内学者有了进一步的研究,如Amaro、Barbosa-Povoa等学者对不确定条件下闭环供应链生产计划开始进行了研究,由于学者们将不确定性设成随机变量,模糊理论成为其重要方法,智能优化算法也得到了发展。
对于闭环供应链设施选址问题,从1909年开始,选址理论的研究已经广泛应用于供应链、企业和公共事业部门等实际问题上。从简单的线性、单产品、单阶段、无容量约束、确定型模型到非线性的、多种产品、多阶段、具有约束条件的概率模型,选址问题的模型逐步与实际生产的生活相接近。与此同时,解决这些模型的数学规划法、智能算法、启发式算法等也相继被提出并发展。
四、总结
根据对国内外闭环供应链文献的研究发现,在闭环供应链契约协调、定价问题上,大多采用博弈论这个方法,对于需求、回收的不确定性往往采用简单的线性函数来表示,但回收产品有很大的复杂性,所以在今后的研究中,可以引用模糊参数来表示其不确定性,并采用群智能优化算法来解决这种多变量的复杂模型;在生产计划模型研究中,没有全面考虑到闭环供应链上的各个企业,没有形成一个完整的链条结构并且闭环供应链上存在多种不确定形式而目前研究局限于物流规划、库存规划单方向问题;在设施选址方面由于闭环供应链中不确定性因素多且繁杂,而文献中对于其不确定性的表示更多只限于采用单一的随机变量,所以并不符合现实生活。