定理2 任意系统(2)的正解(u,v,w) (若存在)必满足
证明 由定理1知β>λ1,u<β,容易验证β,u分别是 (3) 式的有序上解和下解,从而利用标准的上下解方法结合θβ的惟一性即有u<θβ。
定理3 对任意给定的a,b>0,存在β0>λ1,使得β>β0时,
证明 由文[11]中第二章论述可知
对任意的x∈Ω0⊂⊂Ω。
因此利用主特征值性质有
从而对任意给定的a,b,存在β0>λ1,当β>β0时使得左端成立。利用性质(i)和(ii)以及θβ<β可知
同理可得-λ1(-bθβ)2 正解的存在性
令
其中
记L为(2)在(γ*,δ*,θβ,0,0)处关于(u,v,w)的线性化算子,这里γ*,β*由定理3给出。直接计算可知
L=
(4)
则L(φ,ψ,χ)=0等价于
简单计算可知
(5)
这里
(6)
(7)
设L*为算子L的伴随算子,则L*(φ,ψ,χ)=0等价于
注意到λ1(2θβ-β)>0,有φ≡0。所以
(8)
其中
(9)
利用Fredholm选择公理结合(8)式可知
(10)
综合(5) 式,(8) 式有
dimN(L)=codimR(L)=2
所以不能应用基于单重特征值的Crandall-Rabinowitz分歧定理。受文献[13]的启发,我们应用空间分解和隐函数定理来讨论系统(2)发自点(γ*,δ*,θβ,0,0)处的分歧解,即就是下面的定理。
定理 4 对给定的a,b,c,d,当β>β0时,(γ*,δ*,θβ,0,0)是系统(2)的一个分歧点,即在(γ*,δ*,θβ,0,0)的邻域内系统(2)存在正解
(11)
其中
则(u,v,w)是系统(2)的正解等价于(u-θβ,v,w)是H(γ,δ,U)=0的满足u-θβ<0,v>0,w>0的解。容易验证
H(γ,δ,0)≡0,对任意的γ,δ∈R;
HU(γ*,δ*,0)=L,L由(4)式给出
现将空间X,Y做如下正交分解
其中N(L),N(L*),R(L)分别由(5)式,(8)式,(10)式给出;Φ1,Φ2由(6)式给出。故可将任意的U∈X写成
(12)
利用(11)式简单计算可得
其中
以及
i) 当τ1=τ2=s=0,Z=(0,0,0)时,
由(7)式可知上式为零。同理计算可得
所以我们有H1(0,0,0,0)=0。
ii) 令D(Z,τ1,τ2)H1(0,0,0,0)为算子H1在(0,0,0,0)处关于(Z,τ1,τ2)的导算子, 则
(13)
代回到(12) 式可知
是H(γ,δ,U)=0的解。
注1 定理4表明,在蜘蛛的捕食率(即参数a,b)确定的条件下,存在常数β0>λ1,使得昆虫的生长率β大于β0时,只要蜘蛛的生长率γ,δ分别在γ*,δ*附近,系统存在共存态。由于γ*=-λ1(-aθβ),δ*=-λ1(-bθβ)。所以在上述条件下,系统的共存态最终依赖于昆虫的生长率。
[1]NTONIFORNN,PQRRMC,EWUKEMJAEwunkem.Seasonalabundanceanddistributionofthehuntsmanspider,Heteropodavenatoria(Sparassidae: Araneae) in banana agro-ecosystems in Cameroon [J]. Journal of Entomology, 2012, 9: 79-88.
[2] VENKATESHALU, HANUMANTHRAYA L, MARADDI G. Impact of different rice agro-ecosystem on spider population dynamics [J]. Environment and Ecology, 2009, 27(3A): 1231-1236.
[3] VENTURINO E, ISAIA M, BONA F, et al. Modeling the spiders ballooning effect on the vineyard ecology [J]. Mathematical Modeling of Natural Phenomena, 2006, 1(1): 137-159.
[4] CHATTERJEE S, ISAIA M, VENTURINO E. Effects of spiders predational delays in intensive agroecosystems [J]. Nonlinear Analysis: Real World Applications, 2009, 10: 3045- 3058.
[5] SEN M, BANERJEE M, VENTURINO E. A model for biological control in agriculture [J]. Mathematics and Computers in Simulation, 2013, 87(1): 30-44.
[6] 王利娟, 姜洪领. 一类捕食食饵模型正解的定性分析和数值模拟[J]. 中山大学学(自然科学版), 2015, 54(4): 55-62.
[7] 姜洪领, 王利娟. 一类无搅拌Chemostat模型平衡态正解存在性与数值模拟[J]. 中山大学学报(自然科学版), 2011, 50(3): 11-16.
[8] WEI F. Coexistence, stability, and limiting behavior in a one-predator-two-prey model [J]. Journal of mathematical analysis and applications, 1993, 179(2): 592-609.
[9] DANCER E N, DU Y H. Positive solutions for a three-species competition system with diffusion-I. General existence results [J]. Nonlinear Analysis Theory Methods & Applications, 1995, 24(3): 337-357.
[10] DANCER E N, DU Y H. Positive solutions for a three-species competition system with diffusion-II. The case of equal birth rates [J]. Nonlinear Analysis Theory Methods & Applications, 1995, 24(3): 359-373.
[11] DU Y H, LOU Y. Some uniqueness and exact multiplicity results for a predator-prey model [J]. Transactions of the American Mathematical Society, 1997, 349(6): 2443-2475.
[12] WANG L J, JIANG H L, LI Y. Positive steady state solutions of a plant-pollinator model with diffusion [J]. Discrete and Continuous Dynamical Systems-Series B, 2015, 20: 1805-1819.
[13] YAMADA Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions [J]. SIAM Journal on Mathematical Analysis, 1990, 21(2): 327-345.
The existence of steady-state positive solutions for a spider-insect model
JIANGHongling
(Baoji University of Arts and Sciences, Institute of Mathematics and Information Science,Baoji 721013, China)
A one-prey-two-predator spider-insect model is studied. By the variational principle of eigenvalue and the Maximum principle, priori estimates and the necessary conditions of existence for positive solutions are given. Applying the method of space decomposition and implicit function theorem, a sufficient condition of existence of positive solutions is obtained. The results show that, under certain conditions, the coexistence depends on the growth rate of insects.
spider-insect model; steady-state positive solution; existence
10.13471/j.cnki.acta.snus.2016.03.011
2015-11-24
国家自然科学基金资助项目(11401356,11501496);宝鸡文理学院重点科研资助项目(ZK15038)
姜洪领(1978年生),男;研究方向:应用偏微分方程;E-mail:jhonglings@163.com
O
A
0529-6579(2016)03-0064-05