APP下载

基于感应腔支路和角向线LTD新型触发技术

2016-06-03孙凤举曾江涛梁天学姜晓峰王志国尹佳辉邱爱慈

现代应用物理 2016年1期

孙凤举,曾江涛,梁天学,魏 浩,姜晓峰,王志国,尹佳辉,邱爱慈

(西北核技术研究所,西安 710024;强脉冲辐射环境模拟与效应国家重点实验室,西安 710024)



基于感应腔支路和角向线LTD新型触发技术

孙凤举,曾江涛,梁天学,魏浩,姜晓峰,王志国,尹佳辉,邱爱慈

(西北核技术研究所,西安710024;强脉冲辐射环境模拟与效应国家重点实验室,西安710024)

摘要:提出一种利用感应腔1个支路和角向传输线实现直线型变压器驱动源(linear transformer driver,LTD)开关同步触发闭合的新方法,触发支路与LTD感应腔其他支路具有相同工作电压和气压,触发支路不包围磁芯。当触发支路开关被外施1路脉冲触发闭合后,产生快前沿高电压脉冲并沿角向线传输,触发感应腔其他支路开关。该触发方式在20支路并联500 kA LTD感应腔和34支路并联0.1 Hz重频800 kA LTD感应腔上证明可行。基于该触发方式感应腔,又给出了从上游感应腔触发支路引出脉冲触发下游相应位置感应腔的次级为水介质传输线多级串联LTD驱动源的同步触发方法,可显著降低Z箍缩驱动源的外触发脉冲数量。

关键词:Z箍缩ICF/IFE;直线型变压器驱动源;感应腔;触发支路;角向线

直线型变压器驱动源(linear transformer driver,LTD)通过径向均匀排列的多个低LC值支路并联,利用电磁感应实现单级多支路电流叠加和多级串联感应腔电压叠加,直接获得前沿60~200 ns高功率脉冲[1-5],在Z箍缩惯性约束聚变(inertial confinement fusion,ICF)/聚变能源(inertial fusion energy,IFE)[6-12]、闪光照相[13-18]、强激光[19-20]等领域具有重要应用。

要实现Z箍缩ICF/IFE,驱动源电流要达40~60 MA[11]。美国圣地亚国家实验室(Sandia National Laboratory,SNL)提出了次级采用水线和真空磁绝缘传输线(magnetic insulation transmission line,MITL)的60 MA LTD型驱动源概念设计[21-24],次级采用水线方案共210路并联,每路60级1 MA感应腔串联;次级采用MITL方案需要70路并联,每路70级串联。目前,国内外Z箍缩ICF/IFE LTD驱动源概念设计多数以俄罗斯大电流所(Institute of High Current Electronics,IHCE)研制的1MA LTD感应腔为基础[1],每级需4路触发脉冲,因此,60 MA LTD型脉冲源需要数万路触发脉冲,而且要求按一定时序到达各级感应腔,这对触发系统提出了严峻的技术挑战。

我国也在探索LTD驱动源大规模开关的新型触发方法,如尹佳辉等探讨了多级串联LTD触发电路拓扑结构和多路快前沿、140 kV触发脉冲的产生方法[25];刘鹏等电路仿真研究了开关闭合时序对LTD脉冲源输出脉冲的影响[26],提出了一种基于次级感应过电压自动触发LTD设想[27],该触发方法受磁芯在超快前沿脉冲下的时间响应特性、气体开关在直流叠加次级耦合过电压下的击穿闭合时间等因素制约。邱剑等提出基于感应变压器原理的多路开关同步触发方法[28],并在LTD 感应腔磁环加绕副绕组同步产生高压快脉冲,引入下游LTD 感应腔[29],但没有考虑气体开关从施加触发到闭合存在约30~40 ns延时,而且副绕组感应电脉冲受与副绕组并联的磁芯等效损耗电阻、次级阻抗等因素影响,前沿较缓。

本文提出一种利用感应腔1个支路和角向传输线实现LTD开关同步闭合的新型触发方法,1 MA LTD感应腔仅需1路外触发,次级为MITL的LTD型驱动源,触发脉冲数降至1/4;次级为水线60 MA LTD驱动源,每路只需外触发前8级,显著降低了Z箍缩ICF/IFE 大型LTD驱动源对触发系统要求。

1基于内部支路和角向线的LTD触发原理

基于内部1个支路和角向传输线实现同步触发的LTD感应腔结构,如图1所示。

(a) Internal brick and azimuthal line

(b) Sectional view of the induction cavity

图1(a)为去掉上盖板和绝缘子的内部触发支路和角向传输线;图1(b)为感应腔剖视图,对称线右侧支路为触发支路。核心思想是利用LTD感应腔内的电容CT1、CT2和开关ST支路,该支路电容CT1一端接地,当触发支路开关ST被来自感应腔外部的1路脉冲触发闭合后,CT1、CT2和开关ST串联,高压端H通过高阻值隔离电感或电阻与感应腔壳体连接,同时输出到置于感应腔中间绝缘子的角向传输线7,沿圆周方向分别传输1/4圆周到A、C两点,再各自分别沿圆周方向传输1/8圆周,到达B1、B2、D1、D24点,连接到中间绝缘子外侧的金属触发环5,通过隔离电感或电阻连接到感应腔其余支路开关触发电极,实现同级LTD感应腔开关同步触发。

该触发方式的特点:1)每个LTD感应腔仅需1路外部脉冲,触发感应腔内1个触发支路,触发支路工作电压和开关充气气压与感应腔其他支路相同,通过角向传输线分配为4点,连接到感应腔中间绝缘子触发环;2)该触发方式与感应腔引入4路触发脉冲效果基本相同,而且当感应腔工作电压大于±40 kV时,触发支路输出脉冲电压幅值将高于常规外触发脉冲电压幅值,利于开关同步触发;3)该方法采用“化整为零”的思想,将庞大复杂的触发系统分散到各级感应腔内1个不包围磁芯的支路中。

2水介质次级多级串联LTD驱动源的触发

对Z箍缩ICF/IFE 大型LTD驱动源,每路一般需要40支路1 MA LTD感应腔60~70级串联,假定采用70级1 MA感应腔串联,每级4路触发脉冲,则单路共需280路触发脉冲。

基于上述感应腔1个触发支路和角向传输线实现同级感应腔开关同步触发的原理和结构,提出了一种新型触发方法,可实现LTD基本按IVA标准时序触发(所谓标准IVA时序,即电脉冲传输到哪一级,该级感应腔开关刚好触发闭合),如图2所示。 LTD串联感应腔采用图1所示结构,从每级感应腔触发支路引出1路脉冲。LTD感应腔常用多间隙串联气体开关触发,闭合延时约40 ns[32-34],1 MA LTD感应腔轴向长度约为22 cm,次级为水介质时的电气长度约为6.6 ns,相同长度聚乙烯高压电缆传输延时约为1.1 ns,为了使多级串联LTD按IVA标准时序触发,上游需1路外触发的感应腔数量为40 ns/(6.6-1.1) ns≈7.3,因此,数十级串联LTD仅需触发前8级,每级引入1路外触发脉冲。LTD每级感应腔触发支路引出1路脉冲,触发下游相应位置感应腔。例如,上游第1级感应腔触发支路引出脉冲触发第9级感应腔;上游第2级感应腔触发支路引出脉冲触发第10级感应腔。依次类推,实现LTD按IVA标准时序触发。

触发LTD上游感应腔的多路快前沿脉冲发生器也可通过LTD多个支路产生[35-36],如图3所示,多个支路轴对称布置,中间共用1只低电感、低抖动气体开关,开关两端分别充正负极性电压,每个支路连接阻抗50 Ω高压同轴电缆4根。

图2 基于内部支路和角向传输线的次级为水介质多级LTD驱动源的触发原理Fig.2 Schematic of triggering cavities based on an internal brick and azimuthal linefor LTDs with water-insulated transmission line

图3 多支路共用气体开关产生多路触发脉冲原理Fig.3 Schematic for producing multi-output trigger pulses

电缆末端为高阻,经反射产生的脉冲电压幅值约为支路电容串联充电电压的2倍。改变电缆长度调节输出脉冲延时,使之与被触发感应腔位置对应。共用开关的每个支路放电回路电感基本不变,增加支路数,可扩展输出脉冲路数。当2个支路并联,采用与LTD支路相同的四间隙气体开关,每个支路连接4根阻抗为50 Ω的高压同轴电缆,在电容器充电±40 kV、负载1 kΩ时,输出8路触发脉冲波形,如图4所示。脉冲波形前沿25 ns,幅值约140 kV,可满足触发1路次级为水线的LTD脉冲源需要。

图4 2个支路连接8路电缆时典型触发脉冲波形Fig.4 Typical output waveform with 8 cables

基于LTD支路共用1只开关的多路快前沿脉冲发生器特点:改变开关充电电压极性可方便改变输出触发脉冲极性,输出脉冲电压幅值调节范围大;采用文献[19]电路结构,可同时输出双极性脉冲。支路也可采用单极性充电,中心共用1只低电感、低抖动开关,开关一端接地,一端与电容器高压电极连接。单极性充电支路可采用低触发阈值(小于10 kV)的伪火花气体开关,伪火花开关通流约数百千安,可并联更多支路,产生数百路触发脉冲。基于伪火花开关和多支路并联产生多路快前沿触发脉冲的方法可望满足Z箍缩IFE的LTD触发系统要求。

3新触发方法实验验证

利用研制的500 kA LTD感应腔对上述触发方法进行验证。500 kA LTD感应腔共20支路并联,直径2 m,高度22 cm,支路由2只80 nF/100 kV双端引出电极电容器和1只四间隙串联气体开关组成,如图5所示。

图5 20支路500 kA LTD感应腔Fig.5 500 kA LTD cavity with 20 bricks

将其中1个支路80 nF电容换成20 nF,该支路不包围磁芯,支路一端与腔体下底板连接,输出端利用没有金属编织网的高压电缆,如图1所示。角向传输线连接到绝缘子内的触发铜环,触发支路开关触发电极通过约6 μH隔离电感接至感应腔外触发电缆。采用4路外触发和基于内部单支路触发时,500 kA LTD感应腔典型短路波形,如图6所示。

图6 两种触发方式短路输出电流Fig.6 Output current waveforms fortwo triggering methods

两种触发方式下感应腔充电电压及开关气压相同,4路外触发方式下短路电流周期为731 ns,新触发方式下短路电流周期为743 ns。实验表明,引入一路触发脉冲,触发感应腔内部1个支路产生的高电压脉冲经过角向传输线传输到其他支路开关触发电极,可实现本级感应腔开关同步触发。

为了进一步验证基于1个支路及角向传输线的感应腔触发方式可行性,对34支路并联的0.1 Hz重频800 kA LTD感应腔采用上述触发方法。该感应腔可以放置36个支路,其中1个支路位置为磁芯复位隔离电感占用,1个支路为触发支路,其电容为12 nF/100 kV,气体开关工作电压、气压与其他支路完全相同。其余34个支路为主放电支路,支路电容为2只40 nF/100 kV的双端引出电极电容和1只带电晕针均压的四间隙串联气体开关。图7(a)红色电缆为角向传输线,图7(b)为触发支路,经过200 Ω水溶液电阻到触发支路开关。

(a) The triggering brick

(b) The azimuthal line

实验表明:0.1 Hz重频800 kA LTD感应腔,充电±(50~80)kV,感应腔其余34个支路都能够可靠触发,充电±80 kV连接匹配负载,电流峰值达到850 kA,前沿约95 ns,如图8所示,证明了基于内部1个支路和角向传输线实现感应腔同步触发的可行性。

图8 充电±80 kV匹配负载电流波形Fig.8 Output waveforms of 0.1 Hz 800 kA LTD cavity

4小结

面向聚变能源的60 MA超大型LTD脉冲源,数十万只气体开关的同步触发是严峻的技术挑战。本文提出的方法,基于感应腔1个支路和角向传输线实现同级感应腔同步触发,同时,从触发支路引出1路脉冲,触发下游相应位置感应腔,采用LTD“化整为零”的思想,将庞大的触发系统分散为各感应腔内1个不包围磁芯的支路。500 kA 感应腔和0.1 Hz 重频800 kA LTD感应腔的实验表明,该触发方式简单、高效、可靠。对次级为水介质传输线的N级串联LTD驱动源,每路LTD仅需外触发上游8级感应腔,且每级仅需1路触发脉冲,下游感应腔1路触发脉冲来自上游相应位置感应腔的触发支路,即可实现LTD基本按IVA标准时序触发。本文还给出了基于LTD多支路并联共用气体开关产生上百路快前沿触发脉冲的方法,2支路并联共用1只四间隙气体开关,实验结果表明,连接8路50 Ω高压同轴电缆,输出脉冲前沿约25 ns,幅值140 kV。本文提出的基于感应腔1个支路和角向传输线的触发方法将显著减少面向聚变能源的电流60 MA超大型LTD脉冲源对触发系统脉冲数量和时序的要求,尤其适合次级采用水介质传输线的LTD驱动源。

参考文献

[1]KIM A A, MAZARAKIS M G, SINEBRYUKHOV V A, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Phys Rev S T Accel Beams, 2009, 12(5): 050402.

[2]LECHIEN K, MAZARAKIS M G, FOWLER W E, et al. A 1-MV, 1-MA, 0.1-Hz linear transformer driver utilizing an internal water transmission line[C]// 17th IEEE International Pulsed Power Conference, Washington DC,2009: 1 186-1 191.

[3]WOODWORTH J R, STYGAR W A, BENNETT L F, et al. New low inductance gas switches for linear transformer drivers[J]. Phys Rev S T Accel Beams, 2010, 13(8): 080401.

[4]WOODWORTH J R, FOWLER W E, STOLTZFUS B S, et al. Compact 810 kA linear transformer driver cavity[J]. Phys Rev S T Accel Beams, 2011, 14(4): 040401.

[5]周良骥,邓建军,陈林,等. 快脉冲直线变压器驱动源模块的原理及实验[J]. 强激光与粒子束, 2006, 18(10): 1 749-1 752.(ZHOU Liang-ji, DENG Jian-jun, CHEN Lin, et al. Design and experiment of linear transformer driver stage[J]. High Power Laser and Particle Beams, 2006, 18(10): 1 749-1 752.)

[6]MAZARAKIS M G, STRUVE K W. Conceptual design for a linear transformer driver (LTD)-based refurbishment and upgrade of the Saturn accelerator pulsed power system[R]. SAND 2006-5811, Scandia National Labs, 2006.

[7]OLSON C L, MAZARAKIS M G, FOWLER W E, et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield[R]. SAND 2007-0059, Scandia National Labs, 2007.

[8]彭先觉,华欣生. 快Z箍缩——有前途的聚变能源新途径[J]. 中国工程科学, 2008, 10(1): 47-53.(PENG Xian-jue, HUA Xin-sheng. Fast Z-pinch——a new approach for promising fusion energy[J]. Engineering Science, 2008, 10(1): 47-53.)

[9]邱爱慈,孙凤举. Z箍缩和闪光照相用快脉冲功率源技术的发展[J]. 强激光与粒子束, 2008, 20(12): 1 937-1 946.(QIU Ai-ci, SUN Feng-ju. Development of fast pulsed power driver for radiography and Z-pinch[J]. High Power Laser and Particle Beams, 2008, 20(12): 1 937-1 946.)

[10]MATZEN M K, MAZARAKIS M G, BAILEY J E,et al. The science, technology, and applications of terawatt-class pulsed power drivers at Sandia National Laboratories[C]//IEEE International Power Modulator and High Voltage Conference, Atlanta, 2010:1-16.

[11]彭先觉,王真. Z箍缩驱动聚变裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26(9): 090201 (PENG Xian-jue, WANG Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid energy reactor[J].High Power Laser and Particle Beams, 2014,9, 26(9): 090201.)

[12]李正宏,黄洪文,王真, 等. Z箍缩驱动聚变-裂变混合堆总体概念研究进展[J]. 强激光与粒子束, 2014, 26(10): 100202. (LI Zheng-hong, HUANG Hong-wen, WANG Zhen, et al. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100202.)

[13]BAYOL F, CUBAYNES F, DELPLANQUE R, et al. Development of 1 MV ultra-fast LTD generator design[C]//18th IEEE International Pulsed Power Conference,Chicago, 2011: 619-624.

[14]LECKBEE J J, CORDOVA S, OLIVER B V, et al. Linear transformer driver (LTD) research for radiographic applications[C]// 18th IEEE International Pulsed Power Conference, Chicago, 2011: 614-618.

[15]LECKBEE J J, OLIVER B V, BRUNER N, et al. Design of a 7-MV linear transformer driver (LTD) for down-hole flash X-ray radiography[R]. SAND 2008-6142, Scandia National Labs, 2008.

[16]OLIVER B V, LECKBEE J, JOHNSON D, et al. Option study of an orthogonal X-ray radiography axis for pRad at LANSCE area C, Los Alamos[R]. SAND 2010-7261, Scandia National Labs, 2010.

[17]TOURY M, VERMARE C, ETCHESSAHAR B, et al. IDERIX:An 8 MV flash X-rays machine using a LTD design[C]//16th IEEE International Pulsed Power Conference,Albuquerque, 2007: 599-602.

[18]TOURY M, CARTIER F, COMBES P, et al. Transfer and test of a 1 MV LTD generator at CEA[C]// 19th IEEE International Pulsed Power Conference, San Francisco, 2013: 766-769.

[19]KOVALCHUK B M, KHARLOV A V, KUMPYAK E V, et al. Capacitor blocks for linear transformer driver stages[J].Rev Sci Instrum, 2014,85(1):013501.

[20]KOVALCHUK B M, KHARLOV A V, KUMPYAK E V, et al. Pulse generators based on air-insulated linear-transformer-driver stages[J]. Phys Rev S T Accel Beams, 2013,16(5):050401.

[21]STYGAR W A, CUNEO M E, HEADLEY D I, et al. Architecture of petawatt-class Z-pinch accelerators[J]. Phys Rev S T Accel Beams, 2007, 10(3): 030401.

[22]STYGAR W A, FLOWER M E, LECHIEN K R, et al. Shaping of output pulse of a linear-transformer-driver module[J]. Phys Rev S T Accel Beams, 2009, 12(3): 030402.

[23]MAZARAKIS M G, FOWLER W E, LECHIEN K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Trans Plasma Sci,2010, 38(4) :704-713.

[24]MAZARAKIS M G, FOWLER W E, MCDANIEL H. et al. A 1-MA LTD cavities building blocks for next generation ICF/IFE[C]// IEEE International Corference on Inegagauss Magnetic Field Generation and Related Topics, Santa Fe, NW, USA, 2006.

[25]尹佳辉,魏浩,孙凤举, 等. 快脉冲直线变压器驱动源同步触发系统[J]. 强激光与粒子束,2012, 24(4): 871-875. (YIN Jia-hui, WEI Hao, SUN Feng-ju, et al. Synchronized trigger system for fast linear transformer driver[J]. High Power Laser and Particle Beams, 2012, 24 (4) : 871-875.)

[26]LIU P, SUN F J, YIN J H, et al. Effect of cavity-triggering sequences on output parameters of LTD-based drivers [J]. IEEE Trans Plasma Sci, 2011, 39 (5): 1 247-1 953.

[27]YIN J H, LIU P, WEI H, et al. Trigger method based on secondary induced overvoltage for linear transformer drivers[J]. IEEE Trans Plasma Sci,2013, 41 (7):1 760-1 766.

[28]邱剑,刘克富,雷宇. 直线变压器驱动源多路开关同步触发技术[J]. 强激光与粒子束,2012, 24(4): 765-770. (QIU Jian, LIU Ke-fu, LEI Yu, et al. Multi-output synchronization trigger for linear transformer driver[J].High Power Laser and Particle Beams, 2012, 24 (4) : 765-770.)

[29]涂卓麟,邱剑,余澜明, 等. 大规模LTD 自触发驱动技术[C]// 第三届全国脉冲功率会议论文集,长沙,2013.(TU Zhuo-lin, QIU Jian, YU Lan-ming, et al. Large scale LTD self-triggerimg method[C]//The 3rd China Pulsed Power Proceeding, Changsha, 2013.)

[30]王勐,周良骥,邹文康,等. 混合模式直线型变压器驱动源模块[J]. 强激光与粒子束, 2012, 24(5): 1 239-1 243.(WANG Meng, ZHOU Liang-ji, ZOU Wen-kang, et al. Mixed-mode LTD module[J]. High Power Laser and Particle Beams, 2012, 24(5): 1 239-1 243.)

[31]邓建军,王勐,谢卫平, 等. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术[J]. 强激光与粒子束, 2014, 26(10): 100201. (DENG Jian-jun,WANG Meng, XIE Wei-ping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26(10): 100201.)

[32]魏浩,孙凤举,姜晓峰, 等. 直流叠加脉冲电压下FLTD气体开关击穿特性实验[J]. 强激光与粒子束,2014, 26(4): 045039.(WEI Hao, SUN Feng-ju, JIANG Xiao-feng, et al. Breakdown characteristics of gas spark switch for fast linear transformer driver under DC and pulse combined voltage[J]. High Power Laser and Particle Beams, 2014, 26(4): 045039.)

[33]LIANG T X,JIANG X F, WAND Z G, et al. Characteristics study of multi-gaps Gas switch with corona discharge for voltage balance[J]. IEEE Trans Plasma Sci, 2014, 42(2): 340-345.

[34]WOODWORTH J R, ALEXANDER J A, GRUNER F R, et al. Low-inductance gas switches for linear transformer drivers[J]. Phys Rev S T Accel Beams, 2009, 12(6): 060401.

[35]姜晓峰,孙凤举,王志国, 等. 多路输出的高电压纳秒脉冲发生器:中国, 10379250.6[P]. 2013. (JIANG Xiao-feng, SUN Feng-ju, WANG Zhi-guo, et al. High voltage pulse generator with multi-output cables and several nanoseconds rise time:China, 10379250.6[P]. 2013.)

[36]孙凤举, 刘鹏, 邱爱慈, 等. 一种多级串联直线型变压器驱动源的同步触发方法:中国, 0008747.8[P]. 2014.(SUN Feng-ju, LIU Peng, QIU Ai-ci, et al. A synchronization triggering method for multi cavities in series on linear transformer driver: China, 0008747.8[P]. 2014.)

A Novel Triggering Technique Based on an Internal Brick and Azimuthal Line in Cavities for Linear Transformer Drivers

SUN Feng-ju,ZENG Jiang-tao,LIANG Tian-xue,WEI Hao,JIANG Xiao-feng,WANG Zhi-guo,YIN Jia-hui,QIU Ai-ci

(Northwest Institute of Nuclear Technology,Xi’an710024,China;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Xi’an710024, China)

Abstract:In this paper, a novel triggering technique based on an internal brick and azimuthal line in cavities is presented for LTDs. The triggered brick,which is similar to other bricks in cavities, has the same charge voltage and the switch gas pressure, but does not enclose magnetic cores. When the switch in the brick is triggered by an external pulse, a high voltage pulse is produced and transmitted to trigger the switches in other bricks. Therefore, only one external trigger pulse is necessary for a 1 MA LTD cavity. This novel triggering technique for a cavity has been verified in 500 kA LTD cavity with 20 bricks and 800 kA cavities with 34 bricks. Based on this novel triggering technique, only several upstream cavities are triggered by external trigger pulses, the other cavities are triggered by the high pulses from the triggering brick in the particularly located upstream cavities with multi-stage cavities stacked in series for LTDs with water-insulated transmission line. The novel triggering technique can reduce the number of external triggering pulses of Z-pinch LTD pulser remarkablely.

Key words:Z-pinch inertial confinement fusion (ICF)/ inertial fusion energy (IFE);linear transformer driver(LTD);induction cavity;triggering brick;azimuthal line

文献标志码:A

文章编号:2095-6223(2016)010401(7)

中图分类号:TL51,TM836

作者简介:孙凤举(1967-),男,山东济阳人,研究员,博士,主要从事LTD和IVA等脉冲源技术研究。E-mail:sunfengju@nint.ac.cn

基金项目:国家自然科学基金资助项目(51077111)

收稿日期:2015-04-16;修回日期:2015-11-06